The eroded rock and soil materials that are transported downstream by a river are called its load. A river transports, or carries, its load in three different ways: in solution, in suspension, and in its bed load.
Mineral matter that has been dissolved from bedrock is carried in solution. Common minerals carried in solution by rivers include dissolved calcium, magnesium, and bicarbonate. Most of a river’s solution load comes from groundwater seeping into the river. Before it reaches the stream,thegroundwaterhastraveledthroughfracturesinthebedrock, chemically eroding rock along the way.
When river water looks muddy, it is carrying rock material in suspension. Suspended material includes clay, silt, and fine sand. Although these suspended materials are heavier than water, the turbulence of the stream flow stirs them up and keeps them from sinking. Turbulence includes swirls and eddies that form in water as a result of friction between the stream and its channel. The faster a stream flows, the more turbulent and muddy it becomes. A rough or irregular channel also increases turbulence.
A river may also transport rock materials in its bed load. The bed load consists of sand, pebbles, and boulders that are too heavy to be carried in suspension. These heavier materials are moved along the streambed, especially during floods. Boulders and pebbles roll or slide along the river bed. Large sand grains are pushed along the bottom in a series of jumps and bounces.
The relative amounts of a river’s load that are carried in solution, in suspension, and in the bed load depend on the nature of the river, the climate, the type of bedrock, and the season of the year. As a general rule, most of the load carried by the world’s streams and rivers is carried in suspension. The size of a river’s suspended load increases with human land use. Road and building construction and removal of vegetation make it easier for rain to wash sediment into streams and rivers.
Answer:
d ≈ 7,6 g/cm³
Explanation:
d = m/V = 40g/5,27cm³ ≈ 7,6 g/cm³
V = l³ = (1.74cm)³ ≈ 5,27 cm³
Answer:
3.16 × W/
Explanation:
β(dB)=10 ×
= W/
β=55 dB
Therefore plugging into the equation the values,
55=10 })[/tex]
5.5= })[/tex]
=
316227.76×= I
I= 3.16 × W/
The mass of Mg-24 is 24.30506 amu, it contains 12 protons and 12 neutrons.
Theoretical mass of Mg-24:
The theoretical mass of Mg-24 is:
Hydrogen atom mass = 12 × 1.00728 amu = 12.0874 amu
Neutron mass = 12 x 1.008665 amu = 12.104 amu
Theoretical mass = Hydrogen atom mass + Neutron mass = 24.1913 amu
Note that the mass defect is:
Mass defect = Actual mass - Theoretical mass : 24.30506 amu- 24.1913 amu= 0.11376 amu
Calculating the binding energy per nucleon:
So approximately 4.41294 Mev/necleon
The law of reflection states that when a ray of light reflects off a surface, the <em>angle of incidence is equal to the angle of reflection</em>.
In this question, the light ray passes from air to water, an optically denser medium.
Imagine drawing a line to representing the boundary between two mediums. Now imagine drawing a line perpendicular to that boundary line marking where the light ray intersects the boundary line. This second line is called the normal. Whenever a light ray passes into a denser medium with a nonzero angle of incidence, the ray will bend towards the normal, making the <em>angle of refraction smaller than the angle of incidence</em>.
Choice A