Answer:
7.50 m/s^2
Explanation:
The period of a pendulum is given by:
(1)
where
L = 0.600 m is the length of the pendulum
g = ? is the acceleration due to gravity
In this problem, we can find the period T. In fact, the frequency is equal to the number of oscillations per second, so:
And the period is the reciprocal of the frequency:
And by using this into eq.(1), we can find the value of g:
Answer:
The neutron loses all of its kinetic energy to nucleus.
Explanation:
Given:
Mass of neutron is 'm' and mass of nucleus is 'm'.
The type of collision is elastic collision.
In elastic collision, there is no loss in kinetic energy of the system. So, total kinetic energy is conserved. Also, the total momentum of the system is conserved.
Here, the nucleus is still. So, its initial kinetic energy is 0. So, the total initial kinetic energy will be equal to kinetic energy of the neutron only.
Now, final kinetic energy of the system will be equal to the initial kinetic energy.
Now, as the nucleus was at rest initially, so the final kinetic energy of the nucleus will be equal to the initial kinetic energy of the neutron.
Thus, all the kinetic energy of the neutron will be transferred to the nucleus and the neutron will come to rest after collision.
Therefore, the neutron loses all of its kinetic energy to nucleus.
Answer:
<em>a. The rock takes 2.02 seconds to hit the ground</em>
<em>b. The rock lands at 20,2 m from the base of the cliff</em>
Explanation:
Horizontal motion occurs when an object is thrown horizontally with an initial speed v from a height h above the ground. When it happens, the object moves through a curved path determined by gravity until it hits the ground.
The time taken by the object to hit the ground is calculated by:
The range is defined as the maximum horizontal distance traveled by the object and it can be calculated as follows:
The man is standing on the edge of the h=20 m cliff and throws a rock with a horizontal speed of v=10 m/s.
a,
The time taken by the rock to reach the ground is:
t = 2.02 s
The rock takes 2.02 seconds to hit the ground
b.
The range is calculated now:
d = 20.2 m
The rock lands at 20,2 m from the base of the cliff
Answer:
Average speed is 60 km/hour
Explanation:
When we need to calculate average speed, we use this equation:
Where: position at the beginning
at the end
Then:
Finally V = 60 km/hour