The three different motions are;
- The upward motion of the woman is constant
- The downward motion of the woman is also constant
- The horizontal motion of the woman is zero.
<h3>
What is force diagram?</h3>
Force diagram is a pictorial or graphical illustration of different forces acting on object.
In this given question, there two forces acting on the woman as depicted in the force diagram.
- The first force is surface force (Fs)
- The second force is force of Earth (FE)
In the given force diagram, the woman is in equilibrium, this implies that the surface force and the Earth force are equal.
The three different types of motion of the woman that are consistent with the force diagram include the following;
- The upward motion of the woman is constant
- The downward motion of the woman is also constant
- The horizontal motion of the woman is zero since there is no horizontal force on the woman.
Learn more about force diagram here: brainly.com/question/3624253
#SPJ1
Answer: a. This would be exciting, but not surprising. Heat from Martian volcanoes may well be enough to melt water under the Mars' surface.
Explanation: It was recently observed by a team of geological researchers that there exist some activity at the crust of the planet mars. This activity are volcanic in nature and estimated to be about 10kilometers large. Also this volcanic eruptions in the planet mars core are described as among the largest in our solar system. Therefore it won't be a surprise that Heat from Martian volcanoes may well be enough to melt water under the Mars' surface.
Question:
A wire 2.80 m in length carries a current of 5.20 A in a region where a uniform magnetic field has a magnitude of 0.430 T. Calculate the magnitude of the magnetic force on the wire assuming the following angles between the magnetic field and the current.
(a)60 (b)90 (c)120
Answer:
(a)5.42 N (b)6.26 N (c)5.42 N
Explanation:
From the question
Length of wire (L) = 2.80 m
Current in wire (I) = 5.20 A
Magnetic field (B) = 0.430 T
Angle are different in each part.
The magnetic force is given by
So from data
Now sub parts
(a)
(b)
(c)
Answer:
Final velocity of electron,
Explanation:
It is given that,
Electric field, E = 1.55 N/C
Initial velocity at point A,
We need to find the speed of the electron when it reaches point B which is a distance of 0.395 m east of point A. It can be calculated using third equation of motion as :
........(1)
a is the acceleration,
We know that electric force, F = qE
Use above equation in equation (1) as:
v = 647302.09 m/s
or
So, the final velocity of the electron when it reaches point B is . Hence, this is the required solution.