When Emmett is lifting a box
vertically, the forces that must be added to calculate the total force are: the
gravitational force, tension force(the force exerted by Emmett to the box and
the force exerted by the box to Emmett), and air resistance force.
you can subtract the atomic number from the mass number to find the number of neutrons.
Explanation:
We'll need two equations.
v² = v₀² + 2a(x - x₀)
where v is the final velocity, v₀ is the initial velocity, a is the acceleration, x is the final position, and x₀ is the initial position.
x = x₀ + ½ (v + v₀)t
where t is time.
Given:
v = 47.5 m/s
v₀ = 34.3 m/s
x - x₀ = 40100 m
Find: a and t
(47.5)² = (34.3)² + 2a(40100)
a = 0.0135 m/s²
40100 = ½ (47.5 + 34.3)t
t = 980 s
Answer:
speed of current is 5 mile/hr
Explanation:
GIVEN DATA:
speed of motorboat = 15 miles/hr relative with water
let c is speed of current
15-c is speed of boat at upstream
15+c is speed of boat at downstream
we know that
travel time=distance/speed
150+10c+150-10c=1.5(15-c)(15+c)
300=1.5(225-c^2)
300=337.5-1.5c^2
200=225-c^2
c^2=25
c = 5
so speed of current is 5 mile/hr
Given gravitational potential energy when he's lifted is 2058 J.
Kinetic energy is transferred to the person.
Amount of kinetic energy the person has is -2058 J
velocity of person = 7.67 m/s².
<h3>
Explanation:</h3>
Given:
Weight of person = 70 kg
Lifted height = 3 m
1. Gravitational potential energy of a lifted person is equal to the work done.
Gravitational potential energy is equal to 2058 Joules.
2. The Gravitational potential energy is converted into kinetic energy. Kinetic energy is being transferred to the person.
3. Kinetic energy gained = Potential energy lost =
Kinetic energy gained by the person = (-2058 kg.m/s²)
4. Velocity = ?
Kinetic energy magnitude=
Solving for v, we get
The person will be going at a speed of 7.67 m/s².