Answer:
Liquid
Explanation:
Gas is too far away, solid is close but it is not in a random pattern
Answer:
Carbon atoms in graphite and diamond are arranged in different ways. Hence, the two allotropes of carbon have different physical properties.
Explanation:
Both graphite and diamond are both made of only carbon atoms. However, their physical properties differ from each other. Hence, they are called allotropes. Think about how these carbon atoms are arranged in each of the allotropes.
<h3>Graphite</h3>
In graphite, each carbon atom is bonded to three other carbon atoms. These carbon atoms will be located in the same plane. A chunk of graphite can contain many of these planes.
Each carbon atom has four valence electrons. Three of these electrons will be used in the bonds. The other electron will be delocalized. These electrons would flow between the sheets of carbon atoms. That keeps the sheets separate and allow them to slide on top of each other.
<h3>Diamond</h3>
In diamond, each carbon atom is bonded to four other carbon atoms. These carbon atoms will form a tetrahedral network.
In graphite, there's a significant separation between two adjacent sheets of carbon atoms. The force between the two sheets is rather weak. When a piece of graphite is between two objects that move over one another, the layers in the graphite would also slide over one another. Since the attraction between two adjacent sheets isn't very strong, there wouldn't be much resistance. Hence the graphite acts as a lubricant.
In contrast, most of the carbon atoms in a piece of diamond would be connected to each other. Unlike the sheets in graphite, in a diamond there are almost no moving parts. Also, the forces between neighboring carbon atoms are very strong. When an external force acts on a chunk of diamond, the carbon atoms would barely move. Hence, the structure appears to be very rigid. That gives diamond its abrasive properties.
Answer:
B. The collisions release heat, which results in the heating and subsequent melting, sinking, and rising of materials.
Explanation:
Got it correct on edge
The second one is, "<span>Be careful to present only objective facts"</span>
Answer:
18 g
Explanation:
We'll begin by converting 500 mL to L. This can be obtained as follow:
1000 mL = 1 L
Therefore,
500 mL = 500 mL × 1 L / 1000 mL
500 mL = 0.5 L
Next, we shall determine the number of mole of the glucose, C₆H₁₂O₆ in the solution. This can be obtained as follow:
Volume = 0.5 L
Molarity = 0.2 M
Mole of C₆H₁₂O₆ =?
Molarity = mole / Volume
0.2 = Mole of C₆H₁₂O₆ / 0.5
Cross multiply
Mole of C₆H₁₂O₆ = 0.2 × 0.5
Mole of C₆H₁₂O₆ = 0.1 mole
Finally, we shall determine the mass of 0.1 mole of C₆H₁₂O₆. This can be obtained as follow:
Mole of C₆H₁₂O₆ = 0.1 mole
Molar mass of C₆H₁₂O₆ = (12×6) + (1×12) + (16×6)
= 72 + 12 + 96
= 180 g/mol
Mass of C₆H₁₂O₆ =?
Mass = mole × molar mass
Mass of C₆H₁₂O₆ = 0.1 × 180
Mass of C₆H₁₂O₆ = 18 g
Thus, 18 g of glucose, C₆H₁₂O₆ is needed to prepare the solution.