Refer to the diagram shown below.
The basket is represented by a weightless rigid beam of length 0.78 m.
The x-coordinate is measured from the left end of the basket.
The mass at x=0 is 2*0.55 = 1.1 kg.
The weight acting at x = 0 is W₁ = 1.1*9.8 = 10.78 N
The mass near the right end is 1.8 kg.
Its weight is W₂ = 1.8*9.8 = 17.64 N
The fulcrum is in the middle of the basket, therefore its location is
x = 0.78/2 = 0.39 m.
For equilibrium, the sum of moments about the fulcrum is zero.
Therefore
(10.78 N)*(0.39 m) - (17.64 N)*(x-0.39 m) = 0
4.2042 - 17.64x + 6.8796 = 0
-17.64x = -11.0838
x = 0.6283 m
Answer: 0.63 m from the left end.
Answer:
I know u need this
Explanation:
You gave me the runaround
I really hate the runaround
You really got me paranoid
I always keep a gun around
You always give me butterflies
When you come around
When you come around
When you come around
Answer:
<h2>3.0 m/s²</h2>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula
From the question we have
We have the final answer as
<h3>3.0 m/s²</h3>
Hope this helps you
Answer:
Earth's magnetic field serves to deflect most of the solar wind, whose charged particles would otherwise strip away the ozone layer that protects the Earth from harmful ultraviolet radiation.