Answer:
441 [N].
Explanation:
Weight=mass*g, where mass=45; g=9,8.
Weight=45*9.8=441 [N].
I think the correct answer from the choices listed above is the second option. For endothermic reactions, the reactants have less energy than the products. Which would mean that energy should be added to the reaction for it to proceed. Hope this answers the question.
Answer:
See the explanation below
Explanation:
The pressure is defined as the product of the density of the liquid by the gravitational acceleration by the height, and can be easily calculated by means of the following equation.
where:
Ro = density of the fluid [kg/m³]
g = gravity acceleration = 9.81 [m/s²]
h = elevation [m]
In this way we can understand that the greater pressure is achieved by means of the height of the liquid, that is, as long as the fluid has more height, greater pressure will be achieved at the bottom.
Therefore in order of decreasing will be
The largest pressure with the largest height of the liquid, container B. The next is obtained with container D, the next with container A and the lowest pressure with container C.
The pressure decreases as we go from the container B - D - A - C
ANSWER
EXPLANATION
We want to convert 12000 inches to yards.
To do this, divide the value in inches by 36:
That is the answer.
The acceleration of the runner in the given time is 2.06m/s².
Given the data in the question;
Since the runner begins from rest,
- Initial velocity;
- Final velocity;
- Time elapsed;
Acceleration of the runner;
<h3>Velocity and Acceleration</h3>
Velocity is the speed at which an object moves in a particular direction.
Acceleration is simply the rate of change of the velocity of a particle or object with respect to time. Now, we can see the relationship from the First Equation of Motion
Where v is final velocity, u is initial velocity, a is acceleration and t is time elapsed.
To determine the acceleration of the runner, we substitute our given values into the equation above.
Therefore, the acceleration of the runner in the given time is 2.06m/s².
Learn more about Equations of Motion: brainly.com/question/18486505