Alycia tried to prove that \triangle OPQ\cong \triangle STR△OPQ≅△STRtriangle, O, P, Q, \cong, triangle, S, T, R. Statement Reaso
n 1 OP=ST=4OP=ST=4O, P, equals, S, T, equals, 4 Given 2 \overleftrightarrow{OP}\parallel\overleftrightarrow{ST} OP ∥ ST O, P, with, \overleftrightarrow, on top, \parallel, S, T, with, \overleftrightarrow, on top Given 3 \angle O\cong\angle S∠O≅∠Sangle, O, \cong, angle, S When a transversal crosses parallel lines, alternate interior angles are congruent. 4 \triangle OPQ\cong \triangle STR△OPQ≅△STRtriangle, O, P, Q, \cong, triangle, S, T, R Side-angle congruence What is the first error Alycia made in her proof? Choose 1 answer: Choose 1 answer: (Choice A) A Alycia used an invalid reason to justify the congruence of a pair of sides or angles. (Choice B) B Alycia only established some of the necessary conditions for a congruence criterion. (Choice C) C Alycia established all necessary conditions, but then used an inappropriate congruence criterion. (Choice D) D Alycia used a criterion that does not guarantee congruence.