Answer:
(14a+3, 21+4) = 1
Step-by-step explanation:
We are going to use the Euclidean Algorithm to prove that these two integers have a gcd of 1.
gcd (14a + 3, 21a + 4) = gcd (14a+3, 7a + 1) = gcd (1, 7a+1) = 1
Therefore,
(14a + 3, 21a + 4) = 1
Cuz They Are Identical Duhhh
The answer is 1.
Rise over run :)
Answer:
<h2>
<em>angle</em><em> </em><em>of</em><em> </em><em>1</em><em> </em><em>will</em><em> </em><em>be</em><em> </em><em>6</em><em>0</em><em>°</em></h2>
Step-by-step explanation:
<h2 /><h2>
we know vertical opposite angle are equall so </h2><h2>
<em>angle</em><em> </em><em>1</em><em> </em><em>=</em><em> </em><em>6</em><em>0</em><em>°</em></h2>