Answer:
Ke = mgv
Explanation:
(60)(9.81)(2) =1177.2 joules persecond or Watts.
1.177 kilowatts
10H₂ + 5O₂ → 10H₂O
Explanation:
This problem deals with balancing of chemical equations. In balancing chemical equations, the law of conservation of mass must be followed. This states that:
"In a chemical reaction, matter is neither created nor destroyed but transformed from one form to another".
This meaning of this is that; the number of atoms on each side of the expression must be the same.
2H₂ + O₂ → 2H₂O
let us check is the equation above is balanced;
2H₂ + O₂ → 2H₂O
Elements reactant product
H 4 4
O 2 2
We can see vividly that the equation is balanced;
Now; if we have 5 oxygen gas, we multiply the equation through by 5:
5 x ( 2H₂ + O₂ → 2H₂O )
⇒ 10H₂ + 5O₂ → 10H₂O
Elements reactant product
H 20 20
O 10 10
learn more:
Balanced equation brainly.com/question/11102790
#learnwithBrainly
The formula of Iron(III) oxide is Fe2O3
In order to calculate the mass of iron in a given sample of iron(III) oxide, we must first know the mass percentage of iron in iron(III) oxide. This is calculated by:
[mass of iron in one mole of iron(III) oxide/ mass of one mole of iron(III) oxide] * 100
= [(moles of iron * Mr of iron) / (moles of Iron * Mr of Iron + moles of Oxygen * Mr of Oxygen)] * 100
= [(2 * 56) / (2 * 56 + 3 * 16)] * 100
= (112 / 160) * 100
= 70%
Thus, in a 100g sample, the weight of iron will be:
100 * 70%
= 70 grams
Answer:Noble gases:
are highly reactive.
react only with other gases.
do not appear in the periodic table.
are not very reactive with other elements.
Explanation:Noble gases:
are highly reactive.
react only with other gases.
do not appear in the periodic table.
are not very reactive with other elements.
When
Carboxylic Acid is treated with
Alcohols in the presence of
acid as a catalyst it produces corresponding
Esters. This reaction is called as
Esterification.
Also, this reaction is a reversible reaction and the ester formed can also hydrolyze to produce Carboxylic acid and Alcohol. This reverse reaction is called as
transesterification.
The formation of
Ethyl Acetate from
Acetic Acid and
Ethanol in the presence of acid is shown below,