Answer:
Number of moles = 0.0005 mol.
Explanation:
Given data:
pH = 3
Volume of solution = 500 mL
Number of moles = ?
Solution:
HCl dissociate to gives H⁺ and Cl⁻
HCl → H⁺ + Cl⁻
It is known that,
pH = -log [H⁺]
3 = -log [H⁺]
[H⁺] = 10⁻³ M
[H⁺] = 0.001 M
Number of moles of HCl:
Molarity = number of moles / Volume in litter
Number of moles = Molarity × Volume in litter
Number of moles = 0.001 mol/L × 0.5 L
Number of moles = 0.0005 mol
A standard drink of beer is 12 ounces
Answer: Option (E) is the correct answer.
Explanation:
When we move from top to bottom in a group then there occurs an increase in atomic size of the atoms due to increase in the number of electrons.
For example, in group 2A elements beryllium is the smallest in size whereas radium being at the bottom is the largest in size.
Also, atomic number of beryllium is 4 and atomic number of radium is 88.
Thus, we can conclude that out of the given options radium is the 2A element which has the largest atomic radius.
Answer:
The answer to your question is V = 0.108 L or 108 ml
Explanation:
Data
Volume = ?
mass = 0.405 g
Temperature = 273°K
Pressure = 1 atm
Process
1.- Convert mass of Kr to moles
83.8 g of Kr -------------------- 1 mol
0.405 g ------------------- x
x = (0.405 x 1) / 83.8
x = 0.0048 moles
2.- Use the Ideal gas law to solve this problem
PV = nRT
- Solve for V
V = nRT / P
- Substitution
V = (0.0048)(0.082)(273) / 1
- Simplification
V = 0.108 / 1
- Result
V = 0.108 L
I think the correct answer from the choices listed above is option A. The three components of air are all <span>classified as pure substances since they are not chemically bonded so they can be separated by certain processes and be present as a pure substance. Hope this answers the question.</span>