We know: The sum of the measures of the angles of a triangle is equal 180°.
We have: m∠A =65°, m∠B = (3x - 10)° and m∠C = (2x)°.
The equation:
65 + (3x - 10) + 2x = 180
(3x + 2x) + (65 - 10) = 180
5x + 55 = 180 <em>subtract 55 from both sides</em>
5x = 125 <em>divide both sides by 5</em>
x = 25
m∠B = (3x - 10)° → m∠B = (3 · 25 - 10)° = (75 - 10)° = 65°
m∠C = (2x)° → m∠C = (2 · 25)° = 50°
<h3>Answer: x = 25, m∠B = 65°, m∠C = 50°</h3>
Step-by-step explanation:
0.08*300 + 0.13x = 51.95
Multiply thru by 100 to get:
8*300 + 13x = 5195
13x = 5195-2400
13x = 2,795
x = 215 hours
Answer:
y= -2x -8
Step-by-step explanation:
I will be writing the equation of the perpendicular bisector in the slope-intercept form which is y=mx +c, where m is the gradient and c is the y-intercept.
A perpendicular bisector is a line that cuts through the other line perpendicularly (at 90°) and into 2 equal parts (and thus passes through the midpoint of the line).
Let's find the gradient of the given line.
Gradient of given line
The product of the gradients of 2 perpendicular lines is -1.
(½)(gradient of perpendicular bisector)= -1
Gradient of perpendicular bisector
= -1 ÷(½)
= -1(2)
= -2
Substitute m= -2 into the equation:
y= -2x +c
To find the value of c, we need to substitute a pair of coordinates that the line passes through into the equation. Since the perpendicular bisector passes through the midpoint of the given line, let's find the coordinates of the midpoint.
Midpoint of given line
Substituting (-3, -2) into the equation:
-2= -2(-3) +c
-2= 6 +c
c= -2 -6 <em>(</em><em>-</em><em>6</em><em> </em><em>on both</em><em> </em><em>sides</em><em>)</em>
c= -8
Thus, the equation of the perpendicular bisector is y= -2x -8.
Answer:
There will be 12 full teams and 7 extra people.
Step-by-step explanation:
Please mark me Brainliest