The correct option is (b)
NaNH2 is an effective base. It can be a good nucleophile in the few situations where its strong basicity does not have negative side effects. It is employed in elimination reactions as well as the deprotonation of weak acids.Alkynes, alcohols, and a variety of other functional groups with acidic protons, such as esters and ketones, will all be deprotonated by NaNH2, a powerful base.Alkynes are deprotonated with NaNH2 to produce what are known as "acetylide" ions. These ions are powerful nucleophiles that can react with alkyl halides to create carbon-carbon bonds and add to carbonyls in an addition reaction.Acid/base and nucleophilic substitution are the two types of reactions.Using the right base, terminal alkynes can be deprotonated to produce a carbanion.A good C is the acetylide carbanion.The acetylide carbanion can undergo nucleophilic substitution reactions because it is a potent C nucleophile. (often SN2) with 1 or 2 alkyl halides with electrophilic C to create an internal alkyne (Cl, Br, or I).Elimination is more likely to occur with 3-alkyl halides.It is possible to swap either one or both of the terminal H atoms in ethylene (acetylene) to create monosubstituted (R-C-C-H) and symmetrical (R = R') or unsymmetrical (R not equal to R') disubstituted alkynes (R-C-C-R').
Learn more about NANH2 here :-
brainly.com/question/12601787
#SPJ4
<span>After many experiments and many different approaches to the question, the scientist may be able to develop a theory. The theory explains why nature behaves in the way described by the natural law. It answers not only the original question, but also any other questions that were raised during the process. The theory also predicts the results of further experiments, which is how it is checked. Theories are not the end of the process.</span>
Physical Change: It is a type of change in which matter changes its physical state like shape, size but is not transformed into another substance. It is usually a reversible process.
Chemical Change: It is a type of change in which the rearrangement of atoms of one or more than one substance is involved. and it changes its chemical composition that is there is a formation of at least one new substance. It is usually an irreversible process.
Now, keeping in mind the definitions, we can easily classify the examples in the question as physical or chemical change.
7. Chemical Change
8. Chemical Change
9. Physical Change
10. Chemical Change
11. Physical Change
12. Physical Change
13. Chemical Change
14. Physical Change
15. Chemical Change
16. Physical Change
17. Chemical Change
18. Chemical Change
19. Physical Change
20. Physical Change
21. Chemical Change
22. Physical Change
23. Chemical Change
24. Chemical Change
25. Physical Change
1) Answer is: c) The reaction will proceed right.
Balanced chemical reaction: N₂(g) + 3H₂(g) ⇄ 2NH₃(g) ΔH = +92 kJ.
Reducing the volume of the system increase the partial pressures of the products and reactants.
With a pressure increase due to a decrease in volume, the side of the equilibrium with fewer moles is more favorable, there are 4 moles at the left side (three moles of hydrogen and one mole of nitrogen) and 2 moles (ammonia) at the right side of the reaction.
2) Answer is: d) The partial pressure of ammonia will increase.
This reaction is endothermic (enthalpy is higher than zero), which means that heat is added.
According to Le Chatelier's principle when the reaction is endothermic heat is included as a reactant and when the temperature increased, the heat of the system increase, so the system consume some of that heat by shifting the equilibrium to the right, producing more ammonia.