The final temperature : 345 K
<h3>
Further explanation
</h3>
Given
475 cm³ initial volume
600 cm³ final volume
Required
The final temperature
Solution
At standard temperature and pressure , T = 273 K and 1 atm
Charles's Law :
When the gas pressure is kept constant, the gas volume is proportional to the temperature
V₁/T₁=V₂/T₂
Input the value :
T₂=(V₂T₁)/V₁
T₂=(600 x 273)/475
T₂=345 K
Nitrogen fixation is the process that makes atmospheric nitrogen available to plants by mutualistic and free-living bacteria. The process is undertaken by the rhizobium bacteria that live in root roots of plants such as legumes. The mutualistic relationship is that the plant supplies the bacteria with a habitat in which to live, water, and nutrients, and the bacteria supply nitrogen for making plant proteins.
Answer:
Option D. 30 mL.
Explanation:
Step 1:
The balanced equation for the reaction. This is given below:
HNO3 + KOH —> KNO3 + H2O
From the balanced equation above,
The mole ratio of the acid, nA = 1
The mole ratio of the base, nB = 1
Step 2:
Data obtained from the question. This include the following:
Volume of base, KOH (Vb) =.?
Molarity of base, KOH (Mb) = 0.5M
Volume of acid, HNO3 (Va) = 10mL
Molarity of acid, HNO3 (Ma) = 1.5M
Step 3:
Determination of the volume of the base, KOH needed for the reaction. This can be obtained as follow:
MaVa / MbVb = nA/nB
1.5 x 10 / 0.5 x Vb = 1
Cross multiply
0.5 x Vb = 1.5 x 10
Divide both side by 0.5
Vb = (1.5 x 10) /0.5
Vb = 30mL
Therefore, the volume of the base, KOH needed for the reaction is 30mL.
6N
Explanation:
you times 3 and 2 to get six.