Answer: Because it's a combination of chemicals, vodka doesn't freeze at the same temperature as either water or alcohol. Of course, vodka will freeze, but not at the temperature of an ordinary freezer. This is because vodka contains enough alcohol to lower the freezing point of water below the -17°C of your typical freezer.
Explanation: .......
2) 11.2
All you have to do is multiply 44 by 22.4 L, which equals 985.6
Then you divide 985.6 by 88 to get your answer of 11.2 L
Answer:
2Sb^(+3) (aq) + 3S^(-2) (aq) = Sb_2•S_3
Explanation:
First of all, let us balance the equation to give;
2Sb(OH)3 (s) + 3Na2S (aq) = Sb2S3 + 3NaOH
Now, we can observe the presence of positive Sodium ions (Na+) and negative hydroxyl ions (OH-) on both left and right sides of the equation.
Now, the two ions will cancel out. These ions are not really involved in the overall reaction and thus do not require being written in the overall equation. Hence, the overall net ionic reaction can now be written as:
2Sb^(+3) (aq) + 3S^(-2) (aq) = Sb_2•S_3
Environmental Hazards are usually any chemicals that donot naturally occur to exist anywhere and are usually made in the fields of industry or experimental sciences
So if you happen for example to throw a bit of mercury in some river while being in a school trip then this is an environmental hazard created by humans
THE KINETIC MOLECULAR THEORY STATES THAT ALL PARTICLES OF AN IDEAL GAS ARE IN CONSTANT MOTION AND EXHIBITS PERFECT ELASTIC COLLISIONS.
Explanation:
An ideal gas is an imaginary gas whose behavior perfectly fits all the assumptions of the kinetic-molecular theory. In reality, gases are not ideal, but are very close to being so under most everyday conditions.
The kinetic-molecular theory as it applies to gases has five basic assumptions.
- Gases consist of very large numbers of tiny spherical particles that are far apart from one another compared to their size.
- Gas particles are in constant rapid motion in random directions.
- Collisions between gas particles and between particles and the container walls are elastic collisions.
- The average kinetic energy of gas particles is dependent upon the temperature of the gas.
- There are no forces of attraction or repulsion between gas particles.