Answer:
M.Mass = 3.66 g/mol
Data Given:
M.Mass = M = ??
Density = d = 0.1633 g/L
Temperature = T = 273.15 K (Standard)
Pressure = P = 1 atm (standard)
Solution:
Let us suppose that the gas is an ideal gas. Therefore, we will apply Ideal Gas equation i.e.
P V = n R T ---- (1)
Also, we know that;
Moles = n = mass / M.Mass
Or, n = m / M
Substituting n in Eq. 1.
P V = m/M R T --- (2)
Rearranging Eq.2 i.e.
P M = m/V R T --- (3)
As,
Mass / Volume = m/V = Density = d
So, Eq. 3 can be written as,
P M = d R T
Solving for M.Mass i.e.
M = d R T / P
Putting values,
M = 0.1633 g/L × 0.08205 L.atm.K⁻¹.mol⁻¹ × 273.15 K / 1 atm
M = 3.66 g/mol
Answer:
Engineering is all about solving problems using math, science, and technical knowledge. And engineers have solved a lot of problems in the world by designing and building various technologies. We have everything from machines that can breathe for you in hospitals to suspension bridges to computers we use every day. All of these things were once designed by engineers using the engineering design process.
Explanation:
Given :
Human blood should have around 1.04 kg/L platelets.
A blood sample of 4.01 milliliters is collected from a patient to be analyzed for a platelet count.
To Find :
The expected mass in grams of platelets in the blood sample.
Solution :
1 L of human blood contains 1.04 kg of platelets.
So, amount of platelets is 1 ml blood is :
Mass of platelets in 4.01 ml blood is :
Hence, this is the required solution.
<u>Answer:</u> The amount of heat required to warm given amount of water is 470.9 kJ
<u>Explanation:</u>
To calculate the mass of water, we use the equation:
Density of water = 1 g/mL
Volume of water = 1.50 L = 1500 mL (Conversion factor: 1 L = 1000 mL)
Putting values in above equation, we get:
To calculate the heat absorbed by the water, we use the equation:
where,
q = heat absorbed
m = mass of water = 1500 g
c = heat capacity of water = 4.186 J/g°C
= change in temperature =
Putting values in above equation, we get:
Hence, the amount of heat required to warm given amount of water is 470.9 kJ
I believe each oxygen shares 2 elections with the other.