The speed of an object can be determined from the distance vs time graph.
You know that speed = distance/time
in the graph, distance/time = slope of the curve.
So SPEED IS GIVEN BY THE SLOPE of the curve in the graph.
● If the distance vs time curve is a straight line, parallel to time axis(x-axis), slope is 0. That means speed is 0. So the object is at rest.
● If the distance vs time curve is a straight line, with some non-zero slope; That means speed is nonzero and constant. So the object is in uniform motion.
● If the distance vs time curve is a curved, the slope is changing. That means speed is changing. So the object is in an accelerated motion.
The net force acting on the crate is determined as 176 N to the left.
<h3>Net force acting on the crate</h3>
The net force acting on the crate is calculated as follows;
∑F = F1 + F2 + F3 + F4
F(net) = -440y + 176x + 440y - 352x
F(net) = -176 x
The resultant force is pointing in negative x direction.
Thus, the net force acting on the crate is determined as 176 N to the left.
Learn more about net force here: brainly.com/question/14361879
#SPJ1
Answer:
A) Earth and the other inner planets have higher average surface temperatures than the outer planets.
Explanation:
the earth and the other inner planets have higher average surface temperatures than the outer planets.
The reason for this response is due to the distance between the sun and the respective planet, the source of energy generation is the sun and the only way in which the temperature increase of each planet is guaranteed is by radiation, the further away a planet is from its star, its temperature will decrease. Although it is also important to highlight the atmospheric composition of the planet if this planet in its stratosphere has high density clouds that do not allow the entry of solar radiation, the temperature of the planet's surface will not increase, independent of the distance from the sun, but these are more complex cases where specialists in that area enter to perform a study in detail.
When a light wave strikes an object, it can be absorbed, reflected, or refracted by the object. All objects have a degree of reflection and absorption. ... In the natural world, light can also be transmitted by an object. That is, light can pass through an object with no effect (an x-ray, for example).