The value of expanding (2x -3)^4 is 16x^4 + 96x^3 +216x^2 -216x + 81
<h3>How to expand the expression?</h3>
The expression is given as:
(2x -3)^4
Using the binomial expansion, we have:
Evaluate the combination factors.
So, we have:
Evaluate the exponents and the products
Hence, the value of expanding (2x -3)^4 is 16x^4 + 96x^3 +216x^2 -216x + 81
Read more about binomial expansions at:
brainly.com/question/13602562
#SPJ1
Answer:
99,999
Step-by-step explanation:
IF
2=5 ;
3=9 ; 3*5 - 3*2
4=48 ; 4*9 + 4*3
5=220 ; 5*48 - 5*4
6=1,350 6*220 + 6*5
7= 9408 7*1350 - 7*6
THEN 8 = 8*9408 + 8*7 = 75320
Answer:
see explanation
Step-by-step explanation:
The n th term ( explicit formula ) of an arithmetic sequence is
= a₁ + (n - 1)d
where a₁ is the first term and d the common difference
Given a₁₂ = - 95 and a₃₇ = - 270 , then
a₁ + 11d = - 95 → (1)
a₁ + 36d = - 270 → (2)
Subtract (1) from (2) term by term to eliminate a₁
25d = - 175 ( divide both sides by 25 )
d = - 7
Substitute d = - 7 into (1) and solve for a₁
a₁ + 11(- 7) = - 95
a₁ - 77 = - 95 ( add 77 to both sides )
a₁ = - 18 , thus
= - 18 - 7(n - 1) = - 18 - 7n + 7 = - 7n - 11
= - 7n - 11 ← explicit formula
--------------------------------------------------------------
The recursive formula allows a term in the sequence to be found by adding the common difference d to the previous term, thus
= - 7 with a₁ = - 18 ← recursive formula