That is approximately, in order, a C, a C, a B, a D, an A, a B, and an A.
In grade points that is a 2, a 2, a 3, a 1, a 4, a 3, and a 4.
The average of those numbers is about 2.7, so you have a 2.7.
You can raise that by bringing up the D as it is an outlier here.
Answer:
The correct method for recording numerical information from an experiment is the quantitative method.
Step-by-step explanation:
This method represents the way of recording that tracks variables (sometimes more than one) and how they interact with each other. This will help to establish relationship within your experiment.
Answer:
Simplifying
(20m + 3) + -1(7m + -5) = 0
Reorder the terms:
(3 + 20m) + -1(7m + -5) = 0
Remove parenthesis around (3 + 20m)
3 + 20m + -1(7m + -5) = 0
Reorder the terms:
3 + 20m + -1(-5 + 7m) = 0
3 + 20m + (-5 * -1 + 7m * -1) = 0
3 + 20m + (5 + -7m) = 0
Reorder the terms:
3 + 5 + 20m + -7m = 0
Combine like terms: 3 + 5 = 8
8 + 20m + -7m = 0
Combine like terms: 20m + -7m = 13m
8 + 13m = 0
Solving
8 + 13m = 0
Solving for variable 'm'.
Move all terms containing m to the left, all other terms to the right.
Add '-8' to each side of the equation.
8 + -8 + 13m = 0 + -8
Combine like terms: 8 + -8 = 0
0 + 13m = 0 + -8
13m = 0 + -8
Combine like terms: 0 + -8 = -8
13m = -8
Divide each side by '13'.
m = -0.6153846154
Simplifying
m = -0.6153846154Step-by-step explanation:
Given function is
now we need to find the value of k such that function f(x) continuous everywhere.
We know that any function f(x) is continuous at point x=a if left hand limit and right hand limits at the point x=a are equal.
So we just need to find both left and right hand limits then set equal to each other to find the value of k
To find the left hand limit (LHD) we plug x=-4 into 3x+k
so LHD= 3(-4)+k
To find the Right hand limit (RHD) we plug x=-4 into
so RHD=
Now set both equal
k=-0.47
<u>Hence final answer is -0.47.</u>