Answer:
47.5 g of water can be formed
Explanation:
This is the reaction:
CH₄ + 2O₂ → CO₂ + 2H₂O
Methane combustion.
In this process 1 mol of methane react with 2 moles of oxygen to produce 2 moles of water and 1 mol of carbon dioxide.
As ratio is 1:2, I will produce the double of moles of water, with the moles of methane I have.
1.320 mol .2 = 2.64 moles
Now, we can convert the moles to mass (mol . molar mass)
2.64 mol . 18g/mol = 47.5 g
Molar solubility<span> is the number of moles of a substance (the solute) that can be dissolved per liter of solution before the solution becomes saturated. We calculate as follows:
</span>3Cu2+ + 2(AsO4)3-<span> = Cu3(AsO4)2
</span>
7.6 x 10^-36 = (3x^3)(2x^2)
x = 6.62 x 10^-8 M
Answer:
28.8km/h
Explanation:
Change the 5min to hours.
=5/60 =0.0833hrs
Velocity= Distance /Time
2.4/0.0833
=28.8km/h
A 72 kg athlete climbs a rope to a height of 12m. Calculate the increase in gravitational potential energy it has experienced.
Answer:
8467.2J
Explanation:
Given parameters:
Mass of the athlete = 72kg
Height of the climb = 12m
Unknown:
Increase in gravitational potential energy it has experienced = ?
Solution:
Gravitational potential energy is the energy due to the position of a body. It is mathematically expressed as;
Gravitational potential energy = m x g x h
m is the mass
g is the acceleration due to gravity = 9.8m/s²
h is the height
Insert the parameters and solve;
Gravitational potential energy = 72 x 9.8 x 12
GPE = 8467.2J
Answer:
The mass of water is 36 g.
Explanation:
Mass of hydrogen = 4 g
Mass of water = ?
Solution:
First of all we will write the balance chemical equation:
2H₂ + O₂ → 2H₂O
Number of moles of hydrogen = mass / molar mass
Number of moles of hydrogen = 4 g/ 2 g/mol
Number of moles of hydrogen = 2 mol
Now we compare the moles of water with hydrogen from balance chemical equation.
H₂ : H₂O
2 : 2
Mass of water = moles × molar mass
Mass of water = 2 mol × 18 g/mol
Mass of water = 36 g
If the water oxygen is in excess than mass of water would be 36 g.