6600 /minute so...
396,000 /hour
The problem is asking how much each person will need to pay. Simplifying the problem into an equation with variables (an algorithm) will greatly help you solve it:
S = Sales Tax = $ 7.18 per any purchase
A = Admission Ticket = $ 22.50 entry price for one person (no tax applied)
F = Food = $ 35.50 purchases for two people
We know the cost for one person was: (22.50) + [(35.50/2) + 7.18] =
$ 47.43 per person. Now we can check each method and see which one is the correct algorithm:
Method A)
[2A + (F + 2S)] / 2 = [ (2)(22.50) + [35.50 + (2)(7.18)] ]/ 2 = $47.43
Method A is the correct answer
Method B)
[(2A + (1/2)F + 2S) /2 = [(2)(22.50) + 35.50(1/2) + (2)7.18] / 2 = $38.55
Wrong answer. This method is incorrect because the tax for both tickets bought are not being used in the equation.
Method C)
[(A + F) / 2 ]+ S = [(22.50 + 35.50) / 2 ] + 7.18 = $35.93
Wrong answer. Incorrect Method. The food cost is being reduced to the cost of one person but admission price is set for two people.
Decimal is the dot used after the ones to show parts of one you normally see it in money. 1.50. The . between 1 and 50 is the decimal. Whats in front of the decimal is ones, tens, hundreds, etc and after the decimal is tenths, hundredths, etc.
Hope I helped<span />
Answer:
8978 grams
Step-by-step explanation:
The equation to find the half-life is:
N(t) = amount after the time <em>t</em>
= initial amount of substance
t = time
It is known that after a half-life there will be twice less of a substance than what it intially was. So, we can get a simplified equation that looks like this, in terms of half-lives.
or more simply
= time of the half-life
We know that = 35,912, t = 14,680, and =7,340
Plug these into the equation:
Using a calculator we get:
N(t) = 8978
Therefore, after 14,680 years 8,978 grams of thorium will be left.
Hope this helps!! Ask questions if you need!!
Answer:
its A
Step-by-step explanation:
the y intercept would be -4 and the slope would be -23, put it in y=mx+b form