Answer:
the frequency of the second harmonic of the pipe is 425 Hz
Explanation:
Given;
length of the open pipe, L = 0.8 m
velocity of sound, v = 340 m/s
The wavelength of the second harmonic is calculated as follows;
L = A ---> N + N--->N + N--->A
where;
L is the length of the pipe in the second harmonic
A represents antinode of the wave
N represents the node of the wave
The frequency is calculated as follows;
Therefore, the frequency of the second harmonic of the pipe is 425 Hz.
The distance D where the object comes to rest is 1.08.m.
<h3>What is the distance?</h3>
- The separation of one thing from another in space; the distance or separation in space between two objects, points, lines, etc.; remoteness. The distance of seven miles cannot be accomplished in one hour of walking.
- Learn how to use the Pythagorean theorem to get the separation between two points using the distance formula. The Pythagorean theorem can be rewritten as d==(((x 2-x 1)2+(y 2-y 1)2)
- The distance between any two places is the length of the line segment separating them. By measuring the length of the line segment that connects the two points in coordinate geometry, the distance between them may be calculated.
(c) the distance D where the object comes to rest.
ΔKE ⇒ -0.25*1*9.8*D = 0-1/2*1*
⇒
⇒1.08.m
To learn more about distance, refer to:
brainly.com/question/4998732
#SPJ4
Answer:
Generally, when thermal energy is transferred to a material, the motion of its particles speeds up and its temperature increases. There are three methods of thermal energy transfer: conduction, convection, and radiation. ... Convection transfers thermal energy through the movement of fluids or gases in circulation cells.
Explanation:
Answer:
a) = 10.22 rad/s
b) = 0.35 m
Explanation:
Given
Mass of the particle, m = 1.1 kg
Force constant of the spring, k = 115 N/m
Distance at which the mass is released, d = 0.35 m
According to the differential equation of s Simple Harmonic Motion,
ω² = k / m, where
ω = angular frequency in rad/s
k = force constant in N/m
m = mass in kg
So,
ω² = 115 / 1.1
ω² = 104.55
ω = √104.55
ω = 10.22 rad/s
If y(0) = -0.35 m and we want our A to be positive, then suffice to say,
The value of coefficient A in meters is 0.35 m
Answer and Explanation:
a. An oxygen-filled balloon is not able to float in the air, because the oxygen inside the balloon is of the same density, that is, the same "weight" as the oxygen outside the balloon and present in the atmosphere. The balloon can only float if the gas inside it is less dense than atmospheric oxygen. Helium gas is less dense than atmospheric gas, so if a balloon is filled with helium gas, that balloon will be able to float because of the difference in density.
b. The ship is able to float in the water because its steel construction is hollow and full of air. This makes the average density of this ship less than the density of water, which makes the ship lighter than water and for this reason, this ship is able to float. In addition, the ship is partially immersed, allowing the weight of the ship on the water to counteract the buoyant force that the water promotes on the ship. Weight and buoyant are two opposing forces that keep the ship afloat.