Answer:
1.89 g CaCO₃
Explanation:
You will have to use stoichiometry for this question. First, look at the chemical equation.
Na₂CO₃ + CaCl₂ ==> 2 NaCl + CaCO₃
From the above equation, you can see that for one mole of Na₂CO₃, you will produce one mole of CaCO₃. This means that however many moles of Na₂CO₃ you have in the beginning, you will have the same amount of moles of CaCO₃, theoretically speaking.
So, convert grams to moles. You should get 0.0189 mol Na₂CO₃. This means that you will get 0.0189 mol CaCO₃. I'm not sure what units you want the answer in, but I'm going to give it in grams. Convert moles to grams. Your answer should be 1.89 g.
Answer:
32.5g of sodium carbonate
Explanation:
Reaction of sodium carbonate (Na₂CO₃) with Mg²⁺ and Ca²⁺ as follows:
Na₂CO₃(aq) + Ca²⁺(aq) → CaCO₃(s)
Na₂CO₃(aq) + Mg²⁺(aq) → MgCO₃(s)
<em>1 mole of carbonate reacts per mole of the cations.</em>
<em />
To know the mass of sodium carbonate we must know the moles of carbonate we need to add based on the moles of the cations:
<em>Moles Mg²⁺:</em>
2.91L * (0.0661 moles MgCl₂ / 1L) = 0.192 moles MgCl₂ = Moles Mg²⁺
<em>Moles Ca²⁺:</em>
2.91L * (0.0396mol Ca(NO₃)₂ / 1L) = 0.115 moles Ca(NO₃)₂ = Moles Ca²⁺
That means moles of sodium carbonate you must add are:
0.192 moles + 0.115 moles = 0.307 moles sodium carbonate.
In grams (Using molar mass Na₂CO₃ = 105.99g/mol):
0.307 moles Na₂CO₃ * (105.99g / mol) =
<h3>32.5g of sodium carbonate</h3>
-they are inside the nucleus of an atom
- they have a relative charge of +1
- they have a relative mass of 1
Explanation:
99 is not a prime number because it can be multiplied by itself and by other numbers
99*1
9*11