You forgot to add pictures ..
Since protons are postive and neutrons are neutral. Then it is postive.
Option A: Clouds
In the morning, air is cool and as sun begins to rise it starts increasing the temperature of air. By time, the air becomes warmer and warmer. Depending upon the surrounding conditions, air in different areas heat up at different rates.
Due to this heating, thermal formation takes place, this is due to uneven heating of surface of earth. The thermal formation at surface causes difference in temperature of surface of the earth and air around it. The warm air has tendency to rise thus, the air in the thermal rise and expand. Due to expansion it cools down, this process continues till the temperature of thermal air reaches equals to the temperature of surrounding air. This results in the formation of cloud.
Thus, when a humid air mass rises into a cooler temperature area, clouds formation takes place
Out of the options, glass is the least fluid. The proof of this also lies in the fact that glass is the most difficult to melt out of all of the mentioned substances, and melting point gives us a rough estimate of the strength of intermolecular forces.
Answer:
The granite block transferred <u>4080 joules</u> of energy, and the mass of the water is <u>35.84 grams</u>.
Explanation:
The equation needed to answer both parts of the question is:
Q = mcΔT
In this equation,
-----> Q = energy/heat (J)
-----> m = mass (g)
-----> c = specific heat (J/g°C)
-----> ΔT = change in temperature (°C)
<u>Part #1:</u>
First, you need to find the energy transferred from granite block using the previous equation. You have been given the mass, specific heat, and change in temperature.
Q = ? J c = 0.795 J/g°C
m = 126.1 g ΔT = 92.6 °C - 51.9 °C = 40.7 °C
Q = mcΔT
Q = (126.1 g)(0.795 J/g°C)(40.7 )
Q = 4080
<u>Part #2:</u>
Secondly, using the energy calculated in Part #1, you need to calculate the mass of the water. You have calculated the energy transferred, and have been given the specific heat and change in temperature.
Q = 4080 J c = 4.186 J/g°C
m = ? g ΔT = 51.9 °C - 24.7 °C = 27.2 °C
Q = mcΔT
4080 J = m(4.186 J/g°C)(27.2 °C)
4080 J = m(113.8592)
35.84 = m