Answer:
The average induced emf in the loop is 0.20 V
Explanation:
Given:
Radius of loop m
Magnetic field T
Change in time sec
According to the faraday's law,
Induced emf is given by
Where magnetic flux
( here )
Where
We neglect minus sign because it's shows lenz law
V
Therefore, the average induced emf in the loop is 0.20 V
Answer:
vp = 0.94 m/s
Explanation
Formula
Vp = position/ time
position: Initial position - Final position
Position = 25 m - (-7 m) = 25 m + 7 m = 32 m
Then
Vp = 32 m / 34 seconds
Vp = 0.94 m/s
Current will be
now just pluf in the values and Voila..
Answer:
The smallest part of a millimeter that can be read with a digital caliper with a four digit display is 0.02mm. Thus, it has to be converted to centimetre. So, divide by 10, we then have 0.02/10= *0.002cm* not mm.
Answer:
Explanation:
Given:
- Three identical charges q.
- Two charges on x - axis separated by distance a about origin
- One on y-axis
- All three charges are vertices
Find:
- Find an expression for the electric field at points on the y-axis above the uppermost charge.
- Show that the working reduces to point charge when y >> a.
Solution
- Take a variable distance y above the top most charge.
- Then compute the distance from charges on the axis to the variable distance y:
- Then compute the angle that Force makes with the y axis:
cos(Q) = sqrt(3)*a / 2*r
- The net force due to two charges on x-axis, the vertical components from these two charges are same and directed above:
F_1,2 = 2*F_x*cos(Q)
- The total net force would be:
F_net = F_1,2 + kq / y^2
- Hence,
- Now for the limit y >>a:
- Insert limit i.e a/y = 0
Hence the Electric Field is off a point charge of magnitude 3q.