Answer:
The answer is reciprocal chromosomal translocation
Explanation:
The Philadelphia chromosome (Ph) is the truncated chromosome 22 generated by the reciprocal translocation t(9;22)(q34;q11) and was first identified in 1960 in a patient with CML [3]. Translocation of the proto-oncogene tyrosine-protein kinase (ABL1) gene located on chromosome 9 to the breakpoint cluster region (BCR) gene located on chromosome 22 results in a BCR-ABL1 fusion gene on the Ph [4, 5]. Three BCR-ABL1 fusion gene hybrids encode BCR-ABL1 protein isoforms p210, p190, and p230, which have persistently enhanced tyrosine kinase (TK) activity. These aberrantly activated kinases disturb downstream signaling pathways, causing enhanced proliferation, differentiation arrest, and resistance to cell death [6, 7]. Tyrosine kinase inhibitors (TKIs) targeting the BCR-ABL1 protein are the most successful targeted therapy for Ph-positive leukemia.
Answer:
udjduduxhjdisksbhxixjbdjx
1.p1000
2.p100
3.p200
4.p20
If this helped pls mark as brainlist
Answer:
Crossing over and random alignment are the events of meiosis-I that add new gene combinations to the gametes. Random fusion of male and female gametes is called random fertilization.
Explanation:
During the pachytene stage of meiosis-I, part of the chromatids of each of the homologous chromosomes of a bivalent is broken apart and exchanged. This exchange of the genetic material between the members of a bivalent is called crossing over. The recombinant chromatids formed by crossing over have new allele combinations that were otherwise not present in the parental chromatids.
During metaphase I, the homologous pairs are aligned at the cell's equator in a random manner. This means that either the paternal or maternal chromosome of a pair may face one or the other pole of the cell. The arrangement of chromosomes during metaphase-I determines whether the paternal or maternal chromosome of each pair would be distributed to one or the other pole of the cell. This random segregation creates new gene combinations in gametes.
All the gametes have equal chances of getting fused with a gamete from the opposite gender. This is called random fertilization and further adds variations.