No u didn’t, the line is wrong. from the point -1 it should intercept (-2,-4) and (2,2)
X=7. The two segments on the bottom as well as on the diagonal are the same length. This shows that the entire triangle and the inner triangle on the right are similar. So if we call the length of the bottom 2y, then 84/2y=6x/y. Solving this we get 84=12x, and so x=7
Answer:
17
Step-by-step explanation:
Let the larger number be represented by x
Let the smaller number be represented by y
from the question, the next equations can be gotten :
x - y = 9 equation 1
x = 1 + 2y equation 2
Substitute for x in equation 1
1 + 2y - y = 9
1 + y = 9
Collect like terms
y = 9 - 1
y = 8
Substitute for y in equation 1 and solve for x (the larger number)
x - 8 = 9
x = 9 + 8
x = 17
Assuming I understand your question correctly, in that you’re looking for just some descriptions of the differences between the functions. If so, then I’d say:
First graph both functions, the f(x) and the g(x). Then spot the differences.
Note that the g(x) function has shifted towards the right compared with the f(x) function.
Another way that the g(x) differs from the f(x) function is that it’s stretched. The vertex is in the IV quadrant for g(x) rather than at the origin for f(x).
I hope that helps.
Answer;
The relevant probability is 0.136 so the value of 56 girls in 100 births is not a significantly high number of girls because the relevant probability is greater than 0.05
Step-by-step explanation:
The complete question is as follows;
For 100 births, P(exactly 56 girls = 0.0390 and P 56 or more girls = 0.136. Is 56 girls in 100 births a significantly high number of girls? Which probability is relevant to answering that question? Consider a number of girls to be significantly high if the appropriate probability is 0.05 or less V so 56 girls in 100 birthsa significantly high number of girls because the relevant probability is The relevant probability is 0.05
Solution is as follows;
Here. we want to know which of the probabilities is relevant to answering the question and also if 56 out of a total of 100 is sufficient enough to provide answer to the question.
Now, to answer this question, it would be best to reach a conclusion or let’s say draw a conclusion from the given information.
The relevant probability is 0.136 so the value of 56 girls in 100 births is not a significantly high number of girls because the relevant probability is greater than 0.05