Answer:
Explanation:
Convergent boundaries: where two plates are colliding. Subduction zones occur when one or both of the tectonic plates are composed of oceanic crust. ...
Divergent boundaries – where two plates are moving apart. ...
Transform boundaries – where plates slide passed each other.
Answer:
c. The atoms of one element can be identical to the atoms of another element.
Explanation:
<em>Which of the following is not a statement of Dalton's atomic theory of matter?</em>
<em>a. Elements are made of atoms.</em> TRUE. An atom is the smallest particle of a chemical element that can exist.
<em>b. Atoms of a given element are identical.</em> TRUE. The only slight difference is in the mass of isotopes.
<em>c. The atoms of one element can be identical to the atoms of another element.</em> FALSE. The atoms of different elements are different from one to another.
<em>d. A given compound always has the same number and kinds of atoms. </em>TRUE. This is known as Dalton's law of constant composition.
Answer:
You are moving because the Earth and everything in our solar system is constantly moving. ... As the Earth rotates, it also moves, or revolves, around the Sun. The Earth's path around the Sun is called its orbit. It takes the Earth one year, or 365 1/4 days, to completely orbit the Sun.
Answer:
Explanation:
Given parameters:
pH = 3.50
Unknown:
concentration of [H₃0⁺] = ?
concentration of [OH⁻] = ?
Solution:
In order to find the unknown, we use some simple expressions which best explains the pH scale and the equilibrium systems of aqueous solutions.
pH = -log₁₀[H₃O⁺]
[H₃O⁺] = inverse log₁₀ (-pH) = =
[H₃O⁺] = 3.2 x 10⁻⁴moldm⁻³
For the [OH⁻]:
we use : pOH = -log₁₀ [OH⁻]
Recall: pOH + pH = 14
pOH = 14 - pH = 14 - 3.5 = 10.5
Now we plug the value of pOH into pOH = -log₁₀ [OH⁻]
[OH⁻] =
[OH⁻] = = 3.2 x 10⁻¹¹moldm⁻³
The solution is acidic as the concentration of H₃0⁺ is more than that of the OH⁻ ions.
Answer:
1. 4-ethyl-1-heptene
2. 6-ethyl-2-octene
3. 1-butyne
Explanation:
The compounds are named according to IUPAC rules.
Compound 1:
- Identify the longest carbon chain. This chain is called the parent chain.
- Identify all of the substituents (groups appending from the parent chain).
- The parent chain is numbered so that the multiple bonds have the lowest numbers (double has the priority over alkyl substituents).
- The longest chain contains 7 carbon atoms, so taken the name hept.
- The double bond between C1 and C2, so take no. 1 and add the suffix ene to hept "1-heptene".
- The ethyl group is the alkyl substituent on position 4.
- So the name is 4-ethyl-1-heptene.
Compound 2:
- Identify the longest carbon chain. This chain is called the parent chain.
- Identify all of the substituents (groups appending from the parent chain).
- The parent chain is numbered so that the multiple bonds have the lowest numbers (double has the priority over alkyl substituents).
- The longest chain contains 8 carbon atoms, so taken the name oct.
- The double bond between C2 and C3, so take no. 2 and add the suffix ene to oct "2-octene".
- The ethyl group is the alkyl substituent on position 6.
- So the name is 6-ethyl-2-octene.
Compound 3:
- Identify the longest carbon chain. This chain is called the parent chain.
- Identify all of the substituents (groups appending from the parent chain), there is no substituents.
- The parent chain is numbered so that the multiple bonds have the lowest numbers (Triple bond here take the lowest number).
- The longest chain contains 4 carbon atoms, so taken the name but.
- The triple bond between C1 and C2, so take no. 1 and add the suffix yne to but "1-butyne".