Answer:
68
Step-by-step explanation:
The measure of Arc Q P is 96°. We also know that ∠QTP is central angle, then the measure of arc QP is 96°.
Step-by-step explanation:
<u>Step 1</u>
If QS is a circle diameter,
then m∠QTS=180°.
Let x be the measure of angle RTQ: ∠RTQ =x.
so, let ∠RTQ = x
<u />
<u>Step 2</u>
According to the question,
∠RTQ = ∠RTS - 12°
⇒ ∠RTS = x + 12°
∴ ∠QTS = ∠RTQ + ∠RTS
= x + x + 12° = 2x + 12° = 180°
⇒ 2x = 168°
⇒ x = 84°
⇒ ∠RTQ = 84°
<u></u>
<u>Step 3</u>
Now,
∵∠QTP and ∠RTS are vertical angles
∴ ∠QTP = 84° + 12° = 96°
As ∠QTP is the central angle, hence the measure of arc QP is 96°
<u></u>
<u>Step 4</u>
The Measure of arc QP = 96°
Subtract the minimum data value from the maximum data value to find the data range. In this case, the data range is
10
−
2
=
8
10
-
2
=
8
.
8
but anyway, the numerator will give the angles, and θ is just half of each
ok... that's a negative tiny angle, is in the 4th quadrant, if we stick to the range given, from 0 to 360, so we have to use the positive version of it, 360-4.025
so the angle is 355.975°
now, the 3rd quadrant has another angle whose sine is negative, so... if we move from the 180° line down by 4.025, we end up at 184.025°
and those are the only two angles, because, on the 2nd and 1st quadrants, the sine is positive, so it wouldn't have an angle there
You have a 1/95 chance of pulling a pink rubber band. You have a 1/90 chance of pulling a brown rubber band