Answer:
x= 6, -6
Step-by-step explanation:
Answer:
Step-by-step explanation:
<u>--------------------</u>
<u>hope it helps...</u>
<u>have a great day!!</u>
M = {-0.5, 0.5}that is the plot
Using the normal distribution, there is a 0.2076 = 20.76% probability that the proportion of persons with a college degree will differ from the population proportion by greater than 3%.
<h3>Normal Probability Distribution</h3>
The z-score of a measure X of a normally distributed variable with mean and standard deviation is given by:
- The z-score measures how many standard deviations the measure is above or below the mean.
- Looking at the z-score table, the p-value associated with this z-score is found, which is the percentile of X.
- By the Central Limit Theorem, for a proportion p in a sample of size n, the sampling distribution of sample proportion is approximately normal with mean and standard deviation , as long as and .
The proportion estimate and the sample size are given as follows:
p = 0.45, n = 437.
Hence the mean and the standard error are:
The probability that the proportion of persons with a college degree will differ from the population proportion by greater than 3% is <u>2 multiplied by the p-value of Z when X = 0.45 - 0.03 = 0.42</u>.
Hence:
By the Central Limit Theorem:
Z = (0.42 - 0.45)/0.0238
Z = -1.26
Z = -1.26 has a p-value of 0.1038.
2 x 0.1038 = 0.2076.
0.2076 = 20.76% probability that the proportion of persons with a college degree will differ from the population proportion by greater than 3%.
More can be learned about the normal distribution at brainly.com/question/28159597
#SPJ1