Answer:
3,5
Step-by-step explanation:
Problem 1 Answer:
<u>Simplify both sides of the equation</u>
<u></u><u></u>
<u></u><u></u>
<u></u><u></u>
<u></u>
<u>Add 6 to both sides</u>
<u></u>
<u>Divide both sides by 2</u>
<u></u><u></u>
<u></u><u></u>
----------------------------------------------------------------
Problem 2 Answer:
<u></u>
<u>Simplify both sides of the equation</u>
<u></u><u></u>
<u></u><u></u>
<u></u>
<u>Subtract 5 from both sides</u>
<u></u><u></u>
<u></u><u></u>
<u></u>
<u>Divide both sides by -5</u>
<u></u><u></u>
<u></u><u></u>
----------------------------------------------------------------
Problem 3 Answer:
<u></u>
<u>Simplify both sides of the equation</u>
<u></u><u></u>
<u></u><u></u>
<u></u>
<u>Subtract 120 from both sides</u>
<u></u><u></u>
<u></u><u></u>
<u></u>
<u>Divide both sides by 12</u>
<u></u><u></u>
<u></u><u></u>
----------------------------------------------------------------
Problem 4 Answer:
<u></u>
<u>Move all terms to the left:</u>
<u></u><u></u>
<u></u>
<u>Multiply parentheses</u>
<u></u><u></u>
<u></u>
<u>Add all the numbers together, and all the variables</u>
<u></u><u></u>
<u></u>
<u>Move all terms containing x to the left, all other terms to the right</u>
<u></u><u></u>
----------------------------------------------------------------
Problem 5 Answer:
Answer:
(a) Domain: x > 4
(b) Range: y < -2
Step-by-step explanation:
Domain is the set of x-values that can be inputted into function f(x).
Range is the set of y-values that can be outputted by function f(x).
We see that our x-values span from 4 to infinity. Since it is an open dot, we cannot include it in our domain:
(-4, ∞)
We also see that our y-values span from -2 to negative infinity. Since it is an open dot, we cannot include it in our range:
(-∞, -2)
Answer:
419.5 ft of BX cable
step-by-step explanation:
12x8.5ft= 102 ft
7x18.5 ft= 129.5ft
24x 1.75ft= 42ft
12x 6.5ft=78 ft
2x 34.25= 68.5ft
Add all the answers and you get 419.5 ft
Answer:
THE ANSWER IS -21
Step-by-step explanation: BECAUSE IF YOU TAKE -4P -15P=-19P
-19P-2R=-21