5.2m/s
Explanation:
Given parameters:
Mass of baseball = 0.15kg
Momentum of baseball = 0.78kgm/s
Unknown:
Speed of baseball = ?
Solution:
The momentum of the baseball is a function of the product of the mass and velocity. It is a vector quantity:
Momentum = mass x velocity
Since the speed of the ball is unknown:
Velocity =
=
= 5.2m/s
The speed of the baseball before it lands is 5.2m/s
Learn more:
Momentum brainly.com/question/9484203
#learnwithBrainly
That was a lucky pick.
Twice each each lunar month, all year long, whenever the Moon,
Earth and Sun are aligned, the gravitational pull of the sun adds
to that of the moon causing maximum tides.
This is the setup at both New Moon and Full Moon. It doesn't matter
whether the Sun and Moon are both on the same side of the Earth,
or one on each side. As long as all three bodies are lined up, we
get the biggest tides.
These are called "spring tides", when there is the greatest difference
between high and low tide.
At First Quarter and Third Quarter, when the sun, Earth, and Moon form a
right angle, there is the least difference between high and low tide. Then
they're called "neap tides".
Wave speed= Frequency x Wavelength
-> Wavelength= Wave speed divide Frequency
-> 50m/s divide 100Hz= 0.5m
There are many ways to solve this but I prefer to use the energy method. Calculate the potential energy using the point then from Potential Energy convert to Kinetic Energy at each points.
PE = KE
From the given points (h1 = 45, h2 = 16, h<span>3 </span>= 26)
Let’s use the formula:
v2= sqrt[2*Gravity*h1] where the gravity is equal to 9.81m/s2
v3= sqrt[2*Gravity*(h1 - h3 )] where the gravity is equal to 9.81m/s2
v4= sqrt[2*Gravity*(h1 – h2)] where the gravity is equal to 9.81m/s2
Solve for v2
v2= sqrt[2*Gravity*h1]
= √2*9.81m/s2*45m
v2= 29.71m/s
v3= sqrt[2*Gravity*(h1 - h3 )
=√2*9.81m/s2*(45-26)
=√2*9.81m/s2*19
v3=19.31m/s
v4= sqrt[2*Gravity*(h1 – h2)]
=√2*9.81m/s2*(45-16)
=√2*9.81m/s2*(29)
v4=23.85m/s
<span>The inertia of an object increases if the mass is decreased. Inertia is the resistance of any physical object to a change in its state of motion or rest. It is represented numerically by an object's mass.</span>