Answer:
33.3 g AlCl3
Explanation:
First:
You need a balanced chem equation.
2Al + 3Cl2 --->2AlCl3
So now you use this to set up train track method which helps us cancel out the units. Also we dont care about chlorine because it is excess.
6.73g Al x 1mol Al/26.98g Al x 2mol AlCl3/2molAl x 133.34g AlCl3/1molAlCl3
= 33.3 g AlCl3
It would be weathering because of all the heat and pressure.
First one??
I believe this is the correct answer
Elements are like loners, compounds are like couples, and mixtures are like a group of friends that can also have couples (compounds)
Answer:
28.93 g/mol
Explanation:
This is an extension of Graham's Law of Effusion where
We're only talking about molar mass and time (t) here so we'll just concentrate on . Notice how the molar mass and time are on the same position, recall effusion is when gas escapes from a container through a small hole. The time it takes it to leave depends on the molar mass. If the gas is heavy, like Xe, it would take a longer time (4.83 minutes). If it was light it would leave in less time, that gives us somewhat an idea what our element could be, we know that it's atleast an element before Xenon.
Let's plug everything in and solve for M2. I chose M2 to be the unknown here because it's easier to have it basically as a whole number already.
The square root is easier to deal with if you take it out in the first step, so let's remove it by squaring each side by 2, the opposite of square root essentially.
M2= 0.22 x 131
M2= 28.93 g/mol