<u>Ans: Acetic acid = 90.3 mM and Sodium acetate = 160 mM</u>
Given:
Acetic Acid/Sodium Acetate buffer of pH = 5.0
Let HA = acetic acid
A- = sodium acetate
Total concentration [HA] + [A-] = 250 mM ------(1)
pKa(acetic acid) = 4.75
Based on Henderson-Hasselbalch equation
pH = pKa + log[A-]/[HA]
[A-]/[HA] = 10^(pH-pKa) = 10^(5-4.75) = 10^0.25 = 1.77
[A-] = 1.77[HA] -----(2)
From (1) and (2)
[HA] + 1.77[HA] = 250 mM
[HA] = 250/2.77 = 90.25 mM
[A-] = 1.77(90.25) = 159.74 mM
Answer:
37.1°C.
Explanation:
- Firstly, we need to calculate the amount of heat (Q) released through this reaction:
<em>∵ ΔHsoln = Q/n</em>
no. of moles (n) of NaOH = mass/molar mass = (2.5 g)/(40 g/mol) = 0.0625 mol.
<em>The negative sign of ΔHsoln indicates that the reaction is exothermic.</em>
∴ Q = (n)(ΔHsoln) = (0.0625 mol)(44.51 kJ/mol) = 2.78 kJ.
Q = m.c.ΔT,
where, Q is the amount of heat released to water (Q = 2781.87 J).
m is the mass of water (m = 55.0 g, suppose density of water = 1.0 g/mL).
c is the specific heat capacity of water (c = 4.18 J/g.°C).
ΔT is the difference in T (ΔT = final temperature - initial temperature = final temperature - 25°C).
∴ (2781.87 J) = (55.0 g)(4.18 J/g.°C)(final temperature - 25°C)
∴ (final temperature - 25°C) = (2781.87 J)/(55.0 g)(4.18 J/g.°C) = 12.1.
<em>∴ final temperature = 25°C + 12.1 = 37.1°C.</em>
Answer : The fuel value and the fuel density of pentane is, 49.09 kJ/g and respectively.
Explanation :
Fuel value : It is defined as the amount of energy released from the combustion of hydrocarbon fuels. The fuel value always in positive and in kilojoule per gram (kJ/g).
As we are given that:
Fuel value =
Molar mass of pentane = 72 g/mol
Fuel value =
Fuel value = 49.09 kJ/g
Now we have to calculate the fuel density of pentane.
Fuel density = Fuel value × Density
Fuel density = (49.09 kJ/g) × (0.626g/mL)
Fuel density = 30.73 kJ/mL =
Thus, the fuel density of pentane is
Missing question:
Chemical reaction: H₂ <span>+ 2ICl → 2HCl + I</span>₂.
t₁ = 5 s.
t₂ = 15 s.
c₁ = 1,11 M = 1,11 mol/L.
c₂ = 1,83 mol/L.
rate of formation = Δc ÷ Δt.
rate of formation = (c₂ - c₁) ÷ (t₂ - t₁).
rate of formation = (1,83 mol/L - 1,11 mol/L) ÷ (15 s - 5 s).
rate of formation = 0,72 mol/L ÷ 10 s.
rate of formation = 0,072 mol/L·s.