Answer:
d
Explanation:
rzp-yyib-oiv
plèase jóin ón góógle mèèt
The horizontal force is m*v²/Lh, where m is the total mass. The vertical force is the total weight (233 + 840)N.
<span>Fx = [(233 + 840)/g]*v²/7.5 </span>
<span>v = 32.3*2*π*7.5/60 m/s = 25.37 m/s </span>
<span>The horizontal component of force from the cables is Th + Ti*sin40º and the vertical component of force from the cable is Ta*cos40º </span>
<span>Thh horizontal and vertical forces must balance each other. First the vertical components: </span>
<span>233 + 840 = Ti*cos40º </span>
<span>solve for Ti. (This is the answer to the part b) </span>
<span>Horizontally </span>
<span>[(233 + 840)/g]*v²/7.5 = Th + Ti*sin40º </span>
<span>Solve for Th </span>
<span>Th = [(233 + 840)/g]*v²/7.5 - Ti*sin40º </span>
<span>using v and Ti computed above.</span>
the acceleration or the next force acting on the body is constant
a)You throw a stone horizontally at a speed of 5.0 m/s from the top of a cliff that is 78.4 m high.
from above statement we got
height = 78.4 m
since the ball is thrown, so its vertical velocity would be zero
u = 0
taking g = 9.8m/s^2
now, using the equation of motion
h = ut + gt^2/2
now putting all the values in it
we got ,
78.4 = 9.8 * t^2/ 2
by solving we got,
t = 4 sec
b) now, since along the horizontal , no force acting and accelaration is zero so
R = ut , R is RANGE
R = 5 * 4
range = 20 m
c) vertical components of the stone’s velocity just before it hits the ground = v sin θ =
horizontal components of the stone’s velocity just before it hits the ground = v cos θ
To know more about velocity visit :
brainly.com/question/18084516
#SPJ9