You can solve for the velocity and position functions by integrating using the fundamental theorem of calculus:
<em>a(t)</em> = 40 ft/s²
<em>v(t)</em> = <em>v </em>(0) + ∫₀ᵗ <em>a(u)</em> d<em>u</em>
<em>v(t)</em> = -20 ft/s + ∫₀ᵗ (40 ft/s²) d<em>u</em>
<em>v(t)</em> = -20 ft/s + (40 ft/s²) <em>t</em>
<em />
<em>s(t)</em> = <em>s </em>(0) + ∫₀ᵗ <em>v(u)</em> d<em>u</em>
<em>s(t)</em> = 10 ft + ∫₀ᵗ (-20 ft/s + (40 ft/s²) <em>u</em> ) d<em>u</em>
<em>s(t)</em> = 10 ft + (-20 ft/s) <em>t</em> + 1/2 (40 ft/s²) <em>t</em> ²
<em>s(t)</em> = 10 ft - (20 ft/s) <em>t</em> + (20 ft/s²) <em>t</em> ²
The y intercept = -4
Also, the slope of the line (if needed) is -2.
Answer:
x=−2
Step-by-step explanation:
1 Expand.
6-2x-12=3x+4
6−2x−12=3x+4
2 Simplify 6-2x-126−2x−12 to -2x-6−2x−6.
-2x-6=3x+4
−2x−6=3x+4
3 Add 2x2x to both sides.
-6=3x+4+2x
−6=3x+4+2x
4 Simplify 3x+4+2x3x+4+2x to 5x+45x+4.
-6=5x+4
−6=5x+4
5 Subtract 44 from both sides.
-6-4=5x
−6−4=5x
6 Simplify -6-4−6−4 to -10−10.
-10=5x
−10=5x
7 Divide both sides by 55.
-\frac{10}{5}=x
−
5
10
=x
8 Simplify \frac{10}{5}
5
10
to 22.
-2=x
−2=x
9 Switch sides.
x=-2
x=−2
Answer:
A. x > -1
Step-by-step explanation:
- (x - 3) < 4 (2 + x)
-x + 3 < 8 + 4x
-5x + 3 < 8
-5x < 5
x > -1
Therefore, answer choice A is the correct answer.