Let, the numbers = x,y
x+y= 24 1st eqn
x-y = 44 2nd eqn
24-y-y = 44
-2y = 44-24
y = 20/-2 = -10
substitute that in equation 1st x = 24+10 = 34
so, the numbers would be 34 & -10
Answer:
x = 6
Step-by-step explanation:
EG = 59
EF = 8x - 14
FG = 4x + 1
to find the value of x
EF + FG = EG (same line)
8x - 14 + 4x + 1 = 59
12x -13 = 59
12x = 59 + 13
12x = 72
x = 72 ÷ 12
x = 6
You can even cross check for correct answer
EF + FG = EG
instead of x place the x's value we got
8x - 14 + 4x + 1 = 59
8 (6) - 14 + 4 (6) + 1 = 59
48 - 14 + 24 + 1 = 59
34 + 25 = 59
59 = 59
CROSS - CHECKED
Answer:
63
Step-by-step explanation:
John's percentage:
36 and 48 have a common factor of 12 so divide both of them by 12.
36/12= 3 and 48/12=4 therefore
so 36/48= 3/4 which is 75% but we don't need to focus on the percent.
Don's no. of shirts:
we know Don has 84 shirts so we say
3/4 of 84= no. of shirts that Don put in his closet
84/4=21 21x3=63
Don put 63 shirts in his closet.
Hope that helped! Anymore questions just ask! :)
Answer:
(2, 1)
Step-by-step explanation:
The best way to do this to avoid tedious fractions is to use the addition method (sometimes called the elimination method). We will work to eliminate one of the variables. Since the y values are smaller, let's work to get rid of those. That means we have to have a positive and a negative of the same number so they cancel each other out. We have a 2y and a 3y. The LCM of those numbers is 6, so we will multiply the first equation by a 3 and the second one by a 2. BUT they have to cancel out, so one of those multipliers will have to be negative. I made the 2 negative. Multiplying in the 3 and the -2:
3(-9x + 2y = -16)--> -27x + 6y = -48
-2(19x + 3y = 41)--> -38x - 6y = -82
Now you can see that the 6y and the -6y cancel each other out, leaving us to do the addition of what's left:
-65x = -130 so
x = 2
Now we will go back to either one of the original equations and sub in a 2 for x to solve for y:
19(2) + 3y = 41 so
38 + 3y = 41 and
3y = 3. Therefore,
y = 1
The solution set then is (2, 1)