The right option is; b. mechanical
Mechanical energy is the best description of the energy of the ball as it flies over the pitcher’s head.
Mechanical energy is the energy that an object acquires due to its position or due to its motion. From the question, the baseball player has chemical potential energy (stored as food) which is transformed into work. As the baseball player hits the ball, there is energy exchange in which the ball acquires energy to perform its work. The energy obtained by the ball upon which work is done is called mechanical energy.
In a simple distillation setup, the sequence of equipment from the bench top to the round bottom flask is:
- Thermometer
- Distillation flask
- Round bottom flask
- Bunsen burner
<h3>What is Distillation?</h3>
This is the process in which a mixture is separated through selective boiling and condensation.
The distillation flask and liebig condenser are usually located above the round bottom flask in the set up.
Read more about Distillation here brainly.com/question/24553469
#SPJ4
Answer:
A
Explanation:
molarity=moles of solute/liter of solution
molarity=0.26/0.3
molarity=0.87molar
Here is the complete question.
Benzalkonium Chloride Solution ------------> 250ml
Make solution such that when 10ml is diluted to a total volume of 1 liter a 1:200 is produced.
Sig: Dilute 10ml to a liter and apply to affected area twice daily
How many milliliters of a 17% benzalkonium chloride stock solution would be needed to prepare a liter of a 1:200 solution of benzalkonium chloride?
(A) 1700 mL
(B) 29.4 mL
(C) 17 mL
(D) 294 mL
Answer:
(B) 29.4 mL
Explanation:
1 L = 1000 mL
1:200 solution implies the in 200 mL solution.
200 mL of solution = 1g of Benzalkonium chloride
1000 mL will be
200mL × 1g = 1000 mL × x(g)
x(g) =
x(g) = 0.2 g
That is to say, 0.2 g of benzalkonium chloride in 1000mL of diluted solution of 1;200 is also the amount in 10mL of the stock solution to be prepared.
∴
y(g) =
y(g) = 5g of benzalkonium chloride.
Now, at 17% concentrate contains 17g/100ml:
∴ the number of milliliters of a 17% benzalkonium chloride stock solution that is needed to prepare a liter of a 1:200 solution of benzalkonium chloride will be;
=
z(mL) =
z(mL) = 29.41176 mL
≅ 29.4 mL
Therefore, there are 29.4 mL of a 17% benzalkonium chloride stock solution that is required to prepare a liter of a 1:200 solution of benzalkonium chloride