The player that possess the best ball handling skills and usually handles
the ball often is referred to as the point guard.
Point guards in basketball are referred to as the players who have certain
characteristics such as speed ,an excellent ball handling skills and
leadership qualities.
Point guards is similar to the creative midfielder in soccer which helps to
dictate play and create chances for other team mates which is why they
handle the ball often.
Read more on brainly.com/question/25759951
The solution would be like
this for this specific problem:
<span>
The force on m is:</span>
<span>
GMm / x^2 + Gm(2m) / L^2 = 2[Gm (2m) / L^2] ->
1
The force on 2m is:</span>
<span>
GM(2m) / (L - x)^2 + Gm(2m) / L^2 = 2[Gm (2m) / L^2]
-> 2
From (1), you’ll get M = 2mx^2 / L^2 and from
(2) you get M = m(L - x)^2 / L^2
Since the Ms are the same, then
2mx^2 / L^2 = m(L - x)^2 / L^2
2x^2 = (L - x)^2
xsqrt2 = L - x
x(1 + sqrt2) = L
x = L / (sqrt2 + 1) From here, we rationalize.
x = L(sqrt2 - 1) / (sqrt2 + 1)(sqrt2 - 1)
x = L(sqrt2 - 1) / (2 - 1)
x = L(sqrt2 - 1) </span>
= 0.414L
<span>Therefore, the third particle should be located the 0.414L x
axis so that the magnitude of the gravitational force on both particle 1 and
particle 2 doubles.</span>
Answer:
640 nanometer setara dengan 6.4e-7 meter
Answer:
The normal force will be lower than the gravitational force acting on the car. Therefore the answer is N < mg, which is <em>option B</em>.
Explanation:
Over a round hill, the centripetal force acting toward the the radius of the hill supports the gravitational force (mg) of the car. This notion can be expressed mathematically as follows:
At the top of a round hill
At the foot of a round hill