An object in motion stays in motion while an object at rest stays at rest.
Answer:
high, low
Explanation:
- Energy always flows from a higher level to a lower level.
- It is analogous to the waterfall where waterfalls from a higher level to a lower level.
- So in the case of the pressure of the gas, when there are any numbers of molecules in a given volume of space. The gas is said to be at high pressure.
- When there are fewer molecules in the given volume. The gas is said to be at lower pressure.
- Due to a large number of atoms, the high-pressure gas exerts more force on the container than the force exerted by the low-pressure gas.
- If a hose is connected between these two containers, gas rushes from high pressure to the low pressure. Since the force exerted by the high-pressure gas is greater than that of low-pressure gas.
So, the wind tends to move from high-pressure areas to low pressure.
Answer:
Explanation:
According to coulombs law force between two charges is given by here R is the distance between both the charges which is given as 25 cm
We have given force F =0.036 N
So As is constant which value is
Answer:
The required pressure is 6.4866 atm.
Explanation:
The given data : -
In the afternoon.
Initial pressure of tire ( p₁ ) = 7 atm = 7 * 101.325 Kpa = 709.275 Kpa
Initial temperature ( T₁ ) = 27°C = (27 + 273) K = 300 K
In the morning .
Final temperature ( T₂ ) = 5°C = ( 5 + 273 ) K = 278 K
Given that volume remains constant.
To find final pressure ( p₂ ).
Applying the ideal gas equation.
p * v = m * R * T
= 657.2615 Kpa = 6.486 atm