A force vector F1 points due
east and has a magnitude of 200 Newtons, A second force F2 is added to F1. The
resultant of the two vectors has a magnitude of 400 newtons and points along
the due east/west line. Find the magnitude and direction of F2. Note that there
are two answers.
<span>The given values are
F1 = 200 N</span>
F2 =?
Total = 400 N
Solution:
F1 + F2 = T
200 N + F2 = 400N
F2 = 400 - 200
F2 = 200
N
Answer:
(4.31±0.38) million Solar masses.
Explanation:
The galactic center is the center of the milky way around which the galaxy rotates. It is most likely the location of a supermassive black hole which has a mass of (4.31±0.38) million Solar masses. The location is called Sagittarius A*.
As there is interstellar dust in our line of sight from the Earth infrared observations need to be taken.
A) visible light because it just makes since
smaller, because the part of the velocities cancel each other out
The values of these two forces are equal. Your weight on Earth is equal to the Earth's weight on you. When you and the Earth fall toward each other, your acceleration is greater than the Earth's acceleration, because your mass is less than the Earth's mass.