The given formula for heat, Q=mc(Tf-Ti), is the best way to solve such problems with changes in temperature. It can be said that m is the mass of the substance. C is the specific heat of the substance. The term (Tf-Ti) is the change in temperature.
Q = mc(Tf-Ti) = 480g(0.96 J/g-C)(234-22) = 97689.6 Joules of heat
Answer:
0.6258 g
Explanation:
To determine the number grams of aluminum in the above reaction;
- determine the number of moles of HCl
- determine the mole ratio,
- use the mole ratio to calculate the number of moles of aluminum.
- use RFM of Aluminum to determine the grams required.
<u>Moles </u><u>of </u><u>HCl</u>
35 mL of 2.0 M HCl
2 moles of HCl is contained in 1000 mL
x moles of HCl is contained in 35 mL
We have 0.07 moles of HCl.
<u>Mole </u><u>ratio</u>
6HCl(aq) + 2Al(s) --> 2AlCl3(aq) + 3H2(g)
Hence mole ratio = 6 : 2 (HCl : Al
- but moles of HCl is 0.07, therefore the moles of Al;
Therefore we have 0.0233333 moles of aluminum.
<u>Grams of </u><u>Aluminum</u>
We use the formula;
The RFM (Relative formula mass) of aluminum is 26.982g/mol.
Substitute values into the formula;
The number of grams of aluminum required to react with HCl is 0.6258 g.
Answer:
HCl is the correct answer
Answer: A
Explanation:
1cm=.01 so it would be 167-34