Okay
Mr (H2O)= 18g
therefore moles of H2O
is 720.8/18= 40.04mol
the ratio of H2 to O2 to H2O is
2 : 1 : 2
so moles of H2 is same as H2O here
H2= 40.04moles
moles of O2 is half
so 40.04 x 0.5
20.02moles
grams of O2 is
its moles into Mr of O2
that's 20.02 x 32 = 640.64g
Answer:
Explanation:
1. the 1/2 reaction that occurs at the cathode
3Cl2(g) +6e^- -------------> 6Cl^- (aq)
2 the 1/2 reaction that occurs at the anode
2MnO2(s) + 8OH^-(aq) ----------> 2MnO4^- (aq) + 4H2O(l) +6e^-
2MnO2(s) + 8OH^-(aq) ----------> 2MnO4^- (aq) + 4H2O(l) +6e^-
E0 = -0.59v
3Cl2(g) +6e^- -------------> 6Cl^- (aq)
E0 = 1.39v
3Cl2 (g) + 2MnO2 (s) + 8OH^(−) (aq)---------> 6Cl^(−) (aq) + 2MnO4^(−) (aq) + 4H2O (l)
E0cell = 0.80v
1.95 or 2 is the molarity of a 45.3g sample of KNO3 (101g) dissolved in enough water to make a 0.225L solution.
The correct answer is option b
Explanation:
Data given:
mass of KN = 45.3 grams
volume = 0.225 litre
molarity =?
atomic mass of KNO3 = 101 grams/mole
molarity is calculated by using the formula:
molarity =
first the number of moles present in the given mass is calculated as:
number of moles =
number of moles =
0.44 moles of KNO3
Putting the values in the equation of molarity:
molarity =
molarity = 1.95
It can be taken as 2.
The molarity of the potassium nitrate solution is 2.
Sound waves.
Radio waves and Microwaves are non-ionizing radiation. Gamma waves are ionizing radiation