The DNA polymerases are enzymes that create DNA molecules by assembling nucleotides, the building blocks of DNA. These enzymes are essential to DNA replication and usually work in pairs to create two identical DNA strands from one original DNA molecule. During this process, DNA polymerase “reads” the existing DNA strands to create two new strands that match the existing ones.
Every time a cell divides, DNA polymerase is required to help duplicate the cell’s DNA, so that a copy of the original DNA molecule can be passed to each of the daughter cells. In this way, genetic information is transmitted from generation to generation.
Before replication can take place, an enzyme called helicase unwinds the DNA molecule from its tightly woven form. This opens up or “unzips” the double stranded DNA to give two single strands of DNA that can be used as templates for replication.
DNA polymerase adds new free nucleotides to the 3’ end of the newly-forming strand, elongating it in a 5’ to 3’ direction. However, DNA polymerase cannot begin the formation of this new chain on its own and can only add nucleotides to a pre-existing 3'-OH group. A primer is therefore needed, at which nucleotides can be added. Primers are usually composed of RNA and DNA bases and the first two bases are always RNA. These primers are made by another enzyme called primase.
Although the function of DNA polymerase is highly accurate, a mistake is made for about one in every billion base pairs copied. The DNA is therefore “proofread” by DNA polymerase after it has been copied so that misplaced base pairs can be corrected. This preserves the integrity of the original DNA strand that is passed onto the daughter cells.

A surface representation of human DNA polymerase β (Pol β), a central enzyme in the base excision repair (BER) pathway. Image Credit: niehs.nih.gov
Structure of DNA polymerase
The structure of DNA polymerase is highly conserved, meaning their catalytic subunits vary very little from one species to another, irrespective of how their domains are structured. This highly conserved structure usually indicates that the cellular functions they perform are crucial and irreplaceable and therefore require rigid maintenance to ensure their evolutionary advantage.
Producers are primary consumers and it gets 10 %
Answer:
the answer would be a mutation during reduction division
The over-harvesting is one of the biggest threats to endangered species.
<u>Option: B</u>
<u>Explanation:</u>
- An organism or group of organism or species that is expected to reach extinction in the immediate future, either internationally or under a limited political authority, is understood as an endangered species.
- This may be at threat because of factors including habitat loss and poaching or over-exploitation.
- There are many species which are getting vanished day by day due to pollution or poaching, for an instance, pangolins, who have been hunted beyond he limits for their skin, scales, meat, and some body parts are utilized by people in making traditional medicine.
- The Indian and Philippine pangolin are listed as endangered while the Sunda and the Chinese pangolin are rated as critically endangered by the IUCN, which contributed to the Convention on International Trade in Endangered Species (CITES) prohibiting global trade that had something to do with pangolins or their components.