Answer:
87.1 mph
Explanation:
We are given that
Mass,m=60 kg
Power,P=340 W
Speed,v=5 m/s
Area,
Drag coefficient,
Coefficient of rolling resistance,
Friction force,
Where
Let speed of cyclist=v'
Drag force,
Density of air,
Power,P=
1 m=0.00062137 miles
1 hour=3600 s
Answer:
Given the area A of a flat surface and the magnetic flux through the surface it is possible to calculate the magnitude .
Explanation:
The magnetic flux gives an idea of how many magnetic field lines are passing through a surface. The SI unit of the magnetic flux is the weber (Wb), of the magnetic field B is the tesla (T) and of the area A is (). So 1 Wb=1 T.m².
For a flat surface S of area A in a uniform magnetic field B, with being the angle between the vector normal to the surface S and the direction of the magnetic field B, we define the magnetic flux through the surface as:
We are told the values of and B, then we can calculate the magnitude
Given :
Initial speed , u = 0 m/s .
Final speed , v = 91 km/h = 25.28 m/s .
To Find :
a) Average acceleration .
b ) Assuming the motorcycle maintained a constant acceleration, how far is it from the traffic light after 3.3 s .
Solution :
a )
We know ,by equation of motion :
b)
Also , by equation of motion :
Hence , this is the required solution .
Answer:
0.9
Explanation:
h = 400 mm, h' = 325 mm
Let the coefficient of restitution be e.
h' = e^2 x h
325 = e^2 x 400
e^2 = 0.8125
e = 0.9
Answer:
At the end points of motion (either side) the velocity must be zero because the velocity is changing from - to + (it can't turn around around without passing thru zero,
The velocity will then increase to the midpoint of the motion.
m g h = 1/2 m v^2 where h is the vertical distance thru which the pendulum travels