The correct option is this: THE GAS AND LIQUID ARE AT EQUILIBRIUM.
A chemical system is said to be in equilibrium if the forward and the backward reactions are equal. At equilibrium, both the reactants and the products are present in concentrations which have no tendency to change with time.
First question
Balaneced:
Find how many moles potassium iodide it is in 345.0 grams
Find how many moles potassium nitrate there is for 2.078 moles
Find how many grams potassium nitrate there is in 2.078 moles
Second question
Answer:
A chemical equation is balanced when the number of each kind of atom is the same on both sides of the reaction.
Explanation:
The law of conservation of matter (except in nuclear reactions) indicates that atoms can neither be created or destroyed.
The number of atoms that are in the reactants must be the same as the number of the atoms that are in the product.
The number and types of molecules can (and will) change. The atoms that make up the molecules are rearranged but the number and kinds of atoms stay the same.
Answer:
1.2 atm
Explanation:
Given data
- Volume of the gas in the tank (V₁): 200.0 L
- Pressure of ethylene gas in the tank (P₁): ?
- Volume of the gas in the torch (V₂): 300 L
- Pressure of the gas in the torch (P₂): 0.8 atm
If we consider ethylene gas to be an ideal gas, we can find the pressure of ethylene gas in the tank using Boyle's law.
Answer:
Cl⁻, Na⁺, OH⁻
Explanation:
The titration is:
CuCl₂(aq) + 2 NaOH(aq) → Cu(OH)₂(s) + 2 NaCl(aq)
In solution, before the reaction, the ions are Cu²⁺ and Cl⁻. The addition of NaOH (Na⁺ + OH⁻) produce the precipitation of Cu²⁺ forming Cu(OH)₂(s). When you reach the equivalence point, there is no Cu²⁺ because precipitates completely. All OH⁻ ions reacts when are added but when Cu²⁺ is finished, excess OH⁻ ions still in solution helping to detect the equivalence point.
Thus, ions present after the equivalence point are:<em> Cl⁻, Na⁺</em> (Don't react, spectator ions), and <em>OH⁻</em>.