The final mass after decay can be obtained by using under given relation:
half life period of As-81 = 33 seconds
mf = mi x (1/2^n)
= 100 x ( 1/2^(43.2/33))
= 40.4 %
Answer:
f = 878,080 N
Explanation:
mass of pile driver (m) = 2100 kg
distance of pile driver to steel beam (s) = 5 m
depth of steel driven (d) = 12 cm = 0.12 m
acceleration due to gravity (g0 = 9.8 m/s^{2}
calculate the average force exerted on the pile driver by the beam.
- from work done = force x distance
- work done = change in potential energy of the pile driver
- equating the two equations above we have
force x distance = m x g x (s - d)
f x 0.12 = 2100 x 9.8 x (5- (-0.12))
d = - 0.12 because the steel beam went down at we are taking its
initial position to be an origin point which is 0
f = ( 2100 x 9.8 x (5- (-0.12)) ) ÷ 0.12
f = 878,080 N
Answer:
8.854 pF
Explanation:
side of plate = 0.1 m ,
d = 1 cm = 0.01 m,
V = 5 kV = 5000 V
V' = 1 kV = 1000 V
Let K be the dielectric constant.
So, V' = V / K
K = V / V' = 5000 / 1000 = 5
C = ε0 A / d = 8.854 x 10^-12 x 0.1 x 0.1 / 0.01 = 8.854 x 10^-12 F
C = 8.854 pF
Answer: 0.9264 kg
Explanation: [I'll use "cc" for cubic centimeter, instead of cm^3.
The volume is 6cm*4cm*2cm = 48 cm^3 (cc).
Density of Au is 19.3 g/cc
Mass of gold = (48 cc)*(9.3 g/cc) = 926.4 grams Au
1 kg = 1,000 g
(926.4 grams Au)*(1 kg/1,000 g) = 0.9264 kg, 0.93 kg to 2 sig figs
At gold's current price of $57,500/kg, this bar is worth $53,268. Keep it hidden from your lab partner (and instructor).
Answer:
her displacement <em>s=337.5m</em>
Explanation:
check out the above attachment ☝️