Answer:
1.26 × 10^-8 M
Explanation:
We are given;
Number of moles of mercury (i) chloride as 0.000126 μmol
Volume is 100 mL
We are required to calculate the concentration of the solution.
We need to know that;
Concentration is also known as molarity is given by;
Molarity = Number of moles ÷ Volume
Number of moles = 1.26 × 10^-10 Moles
Volume = 0.01 L
Therefore;
Concentration = 1.26 × 10^-10 Moles ÷ 0.01 L
= 1.26 × 10^-8 M
Thus, the molarity of the solution is 1.26 × 10^-8 M
Aluminium Sulfide
According to rules the positive specie is named first and the negative specie is named last.
Answer:
The volume is 13, 69 L
Explanation:
We use the formula PV=nRT. We convert the temperature in Celsius into Kelvin and the pressure in mmHg into atm.
0°C= 273K---> 56°C= 56 + 273= 329K
760 mmHg----1 atm
719 mmHg----x= (719 mmHgx 1 atm)/760 mmHg= 0,95 atm
PV=nRT ---> V= (nRT)/P
V=( 0,482 molx 0,082 l atm/K mol x 329K)/0,95 atm
<em>V=13,68778526 L</em>
Answer:
It will decrease by 2 units.
Explanation:
The Henderson-Hasselbalch equation for a buffer is
pH = pKa + log(base/acid)
Let's assume your acid has pKa = 5.
(a) If the base: acid ratio is 1:1,
pH(1) = 5 + log(1/1) = 5 + log(1) = 5 + 0 = 5
(b) If the base: acid ratio is 1:100,
pH(2) = 5 + log(1/100) = 5 + log(0.01) = 5 - 2 = 3
(c) Difference
ΔpH = pH(2) - pH(1) = 5 - 3 = -2
If you increase the acid:base ratio to 100:1, the pH will decrease by two units.
Answer:
ammmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm yeah i dont know
Explanation: