Remember velocity = distance/time so that mean you would do 60/3 which equals 20 so the speed(velocity) equals 20
Explanation:
A ____Chemical Reaction_______________________ is a well defined example of a chemical change. A chemical ___ _____chemical equation___________________ can be used to show the changes that occur in a chemical reaction. In a chemical reaction, the substance on the left side of the arrow are the starting substance. These substances are called ___Reactants________________________. The substances on the right side of the arrow are the substances that result from the reaction. These substances are called ____________Products_______________. The arrow is read as either produces or ______yields_____________________. According to the law of conservation of __________mass_________________, atoms are neither lost nor gained during a chemical reaction. This law is illustrated when a chemical equation is ________Balanced___________. When this is done, there will be the same number of ___________atoms________________ of each kind on both sides of the equation. In a chemical equation, the numbers that are placed in front of the symbols and the formulas are called ______________coefficients_____________. They are necessary to keep the ___________________________ of atoms in balance. There are several rules for balancing an equation. First, write the correct ____________(not so sure)_____________ for each reactant and product. Next, choose the coefficients that make the number of atoms of each _______elements(not so sure)________________ on each side of the equation equal. The correctly written formula should not be changed. If you change the formula of a substance, the equation is no longer ___________correct_____________. Changing a formula will indicate a ________Substance___________________ different than the one intended. To balance the equation Mg + O2 à MgO, first choose coefficients to make the number of atoms of each element on each side of the equation equal. You would need to place a coefficient of _________two___________
The molar mass of is 86.02 g/mole
.
<h3><u>
Explanation:</u>
</h3>
The molar mass of a chemical compound is represented as the mass of a unit of that compound separated by the number of substances in that unit, measured in moles. The molar mass is a volume, not molecular, the property of a substance.
The molar mass is a percentage of various examples of the compound, which usually change in mass due to the appearance of isotopes.
From the below attached table, the Molar mass of is 86.0108 g/mol.
Yes that’s why we see it in different shapes all the time
Answer:
1°C temperature change will be observed if a sample of 100 g of ethylene glycol antifreeze solution.
Explanation:
Mass of ethylene glycol = m = 100 g
Specific heat capacity of ethylene glycol = c = 3.5 J/g°C
Change in temperature of ethylene glycol = ΔT
Heat loss by the ethylene glycol = Q = 350 J
ΔT = 1°C
1°C temperature change will be observed if a sample of 100 g of ethylene glycol antifreeze solution.