Answer:
A particle
Explanation:
Modern quantum theory holds that light has both wave-like and particle-like properties. When the length scales involved are large compared to the wavelengths of light (ex., forming images with thin lenses), the
particle nature of light dominates.
Answer:
42 19 K→42 20 Ca+e−
Explanation:
Naturally-occurring potassium atoms have a weighted average atomic mass of 39.10 (as seen on most modern versions of the periodic table.) Each potassium atom contains 19 protons p+ and thus an average potassium atom contains about 39.10−19≈20 neutrons n0.
This particular isotope of potassium-42 contains 42 nucleons (i.e., protons and neutrons, combined;) Like other isotopes of potassium 19 out of these nucleons are protons; the rest 42−19=23 are therefore neutrons.
Answer:
Do research on a Particular topic
Answer:
The answer to the question is
The rate constant for the reaction is 1.056×10⁻³ M/s
Explanation:
To solve the question, e note that
For a zero order reaction, the rate law is given by
[A] = -k×t + [A]₀
This can be represented by the linear equation y = mx + c
Such that y = [A], m which is the gradient is = -k, and the intercept c = [A]₀
Therefore the rate constant k which is the gradient is given by
Gradient = where [A]₁ = 8.10×10⁻² M and [A]₂ = 1.80×10⁻³ M
= = -0.001056 M/s = -1.056×10⁻³ M/s
Threfore k = 1.056×10⁻³ M/s
Answer:
.0924 moles of NaCl
Explanation:
So you know you have 5.4 g of NaCl and you need to know how many moles there are in this amount of NaCl
- You'll need to find the atomic mass of the compound NaCl to help you solve for moles
- Sodium (Na) on the periodic table has a mass of 22.99
- Chlorine (Cl) on the periodic table has a mass of 35.45
Add these two together----> 22.99 + 35.45 = 58.44
Now you can calculate for moles
<u>Written-out method:</u>
<u>5.4 grams of NaCl | 1 mole of NaCl </u>
| 58.44 grams NaCl = .0924 moles of NaCl
<u>Plug into calculator method:</u>
(5.4 g of NaCl/ 58.44g NaCl= .0925 moles)